TO BENCHMARK OR NOT TO BENCHMARK

Laura Leal-Taixé

TO BENCHMARK OR NOT TO BENCHMARK: THE MOTCHALLENGE CASE

Laura Leal-Taixé

THE TRACKING PROBLEM

Sparse

Semi-crowded

Macroscopic

Crowded

Video sequence

Person detection

Person detection

- Missed detections
- False alarms

Person tracking

- Identity switches
- Gaps

Evaluation

Evaluation

EVALUATION: THE MOTA SCORE

Overlap > 50%

EVALUATION: THE MOTA SCORE

t

t+1

EVALUATION: THE MOTA SCORE

MOTA: Multiple object tracking accuracy

Missed objects

Detections

False alarms

Detections

Identity switches

Tracking

DETECTION DEPENDENCY

Detections are the "starting point" for the tracker

THE WELL-KNOWN PARAMETER TUNING

WE NEED A NEW EVALUATION PLATFORM

MOTCHALLENGE

Multiple Object Tracking Benchmark

O data -🗄 vis **1** people f home 🗏 results 🗸 🖈 submit 🗸

 Jogin 🖊 sian up

Welcome to the Multiple Object Tracking Benchmark!

In the recent past, the computer vision community has relied on several centralized benchmarks for performance evaluation of numerous tasks including object detection, pedestrian detection, 3D reconstruction, optical flow, single-object short-term tracking, and stereo estimation. Despite potential pitfalls of such benchmarks, they have proved to be extremely helpful to advance the state-of-the-art in the respective research fields Interestingly, there has been rather limited work on the standardization of multiple target tracking evaluation. One of the few exceptions is the well-known PETS dataset, targeted primarily at surveillance applications. Even for this widely used benchmark, a common technique fo presenting tracking results to date involves using different subsets of the available data, inconsistent model training and varying evaluation scripts.

With this benchmark we would like to pave the way for a unified framework towards more meaningful quantification of multi-target tracking.

What do we provide?

We have created a framework for the fair evaluation of multiple people tracking algorithms. In this framework we provide:

- A large collection of datasets, some already in use and some new challenging sequences!
- Detections for all the sequences.
- A common evaluation tool providing several measures, from recall to precision to running time.
- An easy way to compare the performance of state-of-the-art tracking methods.
- Several challenges with subsets of data for specific tasks such as 3D tracking, surveillance, sports analysis (updates coming soon).

MOT 2015 EDITION

- 16 well-known datasets in the community (PETS, TUD, ETH, KITTI....)

Are they really obsolete?

- 3 new challenging datasets

Increasing the difficulty

Old density: 7.29 New density: 12.8

MOT 2015 EDITION

MOT 2015 EDITION

CURRENT STATE-OF-THE-ART

Tracker	Avg Rank	↑ M	ΟΤΑ	MOTP	FAF	MT	ML	FP	FN	ID Sw.	Frag	Hz	Detector
JointMC 14. ☑	27.9	35.6	⊧18.9	71.9	1.8	23.2%	39.3%	10,580	28,508	457 (8.5)	969 (18.1)	0.6	Public
					м	. Keuper, S. Tan	g, Y. Zhongjie, B.	Andres, T. Brox	, B. Schiele. A Mu	Iti-cut Formulation for Joint	Segmentation and Trac	king of Multiple O	bjects. In , 2016.
PRMOT	25.6	35.6	⊧14.5	69.8	1.4	17.8%	40.5%	7,915	31,303	338 (6.9)	1,066 (21.7)	2.2	Public
15. 🔘 🖌												Anonyn	nous submission
mLK	22.8	35.1	±12.9	71.5	1.0	12.3%	38.3%	5,678	33,815	383 (8.5)	1,175 (26.1)	1.0	Public
17. 🔘 🖌										Yuan Zi	nang, Di Xie and Shiliar	ng Pu (Hikvision Re	esearch Institute)
HybridDAT	24.1	35.0	⊧15.0	72.6	1.5	11.4%	42.2%	8,455	31,140	358 (7.3)	1,267 (25.7)	4.6	Public
18. 🔘 🖌												Anonyn	nous submission
TSMLCDEnew	23.1	34.3	⊧13.1	71.7	1.4	14.0%	39.4%	7,869	31,908	618 (12.9)	959 (20.0)	6.5	Public
19. 🖌				B. V	Vang, G. Wa	ang, K. L. Chan,	L. Wang. Trackle	t Association by	Online Target-Sp	ecific Metric Learning and C	oherent Dynamics Esti	mation. In arXiv:15	511.06654, 2015.
NOMT	21.6	33.7	⊧16.2	71.9	1.3	12.2%	44.0%	7,762	32,547	442 (9.4)	823 (17.5)	11.5	Public
20. 🖌									W. Choi. Ne	ar-Online Multi-target Tracki	ng with Aggregated Lo	cal Flow Descripto	or. In ICCV, 2015.

MOTA +12%

CURRENT STATE-OF-THE-ART

Tracker	Avg Rank	↑ M	OTA	MOTP	FAF	МТ	ML	FP	FN	ID Sw.	Frag	Hz	Detector
NOMTwSDP 1.	7.5	55.5	11.2	76.6	1.0	39.0%	25.8%	5,594	21,322	427 (6.5)	701 (10.7)	6.4	Private
									W. Choi. Ne	ar-Online Multi-target Track	ing with Aggregated Loc	al Flow Descript	or. In ICCV, 2015.
FOMT	18.4	53.0	12.2	74.8	1.2	32.7%	14.6%	6,974	20,776	1,143 (17.3)	2,043 (30.9)	16.0	Private
2. 🔘												Anonyr	mous submission
EAMTT	15.4	53.0	11.1	75.3	1.3	35.9%	19.6%	7,538	20,590	776 (11.7)	1,269 (19.1)	11.5	Private
3. 🔘												Anonyr	mous submission
AMPL	13.6	51.9	11.9	75.0	1.2	26.4%	24.8%	6,963	22,225	372 (5.8)	1,130 (17.7)	2.8	Private
4. 🔘												Anonyr	mous submission
LKDAT_CNN	17.1	49.3	11.8	74.5	1.0	20.8%	28.4%	6,009	24,550	563 (9.4)	1,155 (19.2)	1.2	Private
5. 🔘										Yuan Z	hang, Di Xie and Shilian	g Pu (Hikvision R	esearch Institute)
MOT_DL	20.2	49.1	12.9	73.9	1.5	35.4%	25.0%	8,488	22,281	511 (8.0)	1,390 (21.8)	3.9	Private
6. 🔘												Anonyr	mous submission
TSML_CDE	13.9	49.1	13.0	74.3	0.9	30.4%	26.4%	5,204	25,460	637 (10.9)	1,034 (17.7)	6.5	Private
7.				B. W	/ang, G. Wa	ang, K. L. Chan,	L. Wang. Trackle	t Association by	Online Target-Sp	ecific Metric Learning and (Coherent Dynamics Estir	mation. In arXiv:1	511.06654, 2015.
MDP_SubCNN	22.4	47.5	11.9	74.2	1.5	30.0%	18.6%	8,631	22,969	628 (10.0)	1,370 (21.9)	2.1	Private
8. 🔘					Y. Xiang, /	A. Alahi, S. Sava	rese. Learning to	Track: Online N	Iulti-Object Tracki	ing by Decision Making. In I	nternational Conference	on Computer Vis	ion (ICCV), 2015.

MOTA +20%

DO WE NEED A NEW DATASET?

- Methods reached a MOTA plateau
- Annotations are inaccurate, especially in the sequences with moving camera
- Detections have a poor recall

MOT 2016 EDITION

- Increase the challenge!
- 14 all new sequences

- Improved annotations:
 - Increasing the accuracy of the annotations
 - Annotating occluding elements, distractors, vehicles...

EDITION COMPARISON

	MOT 2015	MOT 2016
Pedestrian BB	101345	292733
Total BB	101345	476532
Tracks	1221	1342
Density	8.9	25.8
Annotation classes	1	11
HD sequences	27 %	86 %

ANNOTATIONS

ANNOTATIONS

MOT 2016 EDITION

MOT 2016 EDITION

DETECTIONS

P. Dollár, R. Appel, S. Belongie, and P. Perona. *Fast feature pyramids for object detection*. PAMI, 2014.

DETECTIONS

P. Dollár, R. Appel, S. Belongie, and P. Perona. *Fast feature pyramids for object detection*. PAMI, 2014.

DETECTIONS

[1] R. Girshick. Fast R-CNN. ICCV 2015

[2] P.F.Felzenszwalb, R.B.Girshick, D.McAllester, and D.Ramanan. Object detection with discriminatively trained part based models. PAMI, 2010.

BASELINES

Method	MOTA	MOTP	FAR	$\mathrm{MT}(\%)$	$\mathrm{ML}(\%)$
TBD	$33.3{\scriptstyle~\pm 9.6}$	76.5	1.0	6.6	58.2
CEM	32.6 ±8.6	75.9	1.3	7.0	59.4
DP_NMS	$31.9{\scriptstyle~\pm 9.9}$	76.4	0.2	4.8	65.2
SMOT	$29.2 \scriptstyle \pm 7.9$	75.2	3.0	4.9	53.3
JPDA_m	$25.9{\scriptstyle~\pm 6.4}$	76.4	0.7	3.7	70.4

MOTA +10% vs MOT15

CURRENT STATE-OF-THE-ART

Tracker	Avg Rank	↑ MC	ATC	MOTP	FAF	MT	ML	FP	FN	ID Sw.	Frag	Hz	Detector
NOMT	9.5	46.4	±9.9	76.6	1.6	18.3%	41.4%	9,753	87,565	359 (6.9)	504 (9.7)	2.6	Public
8. 🛛									W. Choi. Near-Onli	ine Multi-target Tracking	with Aggregated Loc	al Flow Descript	tor. In ICCV, 2015.
JMC	11.6	46.3	±9.0	75.7	1.1	15.5%	39.7%	6,373	90,914	657 (13.1)	1,114 (22.2)	0.8	Public
9. 🖌					S. Tanç	g, B. Andres, M.	Andriluka, B. Sc	hiele. Subgraph D	Decomposition for Mu	ulti-Object Tracking. In (Computer Vision and F	attern Recognit	tion (CVPR), 2015.
YGT	15.4	45.2	±9.0	73.9	2.2	18.6%	41.9%	13,130	86,090	676 (12.8)	1,008 (19.1)	0.6	Public
10. <u>SMMUML</u> 11 □	13.9	43.3	±13.6	74.3	1.4	11.9%	42.8%	8,463	93,892	985 (20.3)	1,509 (31.1)	Anony 182.7	mous submission Public
11. M												Anony	mous submission
oICF	15.1	43.2	10.2	74.3	1.1	11.3%	48.5%	6,651	96,515	381 (8.1)	1,404 (29.8)	0.4	Public
12. 🔘 🗹			H. Ki	eritz, S. Becker	, W. Hübnei	r, M. Arens. Onlir	ne Multi-Person	Tracking using Int	egral Channel Featu	res. In IEEE Advanced V	lideo and Signal-based	d Surveillance (A	AVSS) 2016, 2016.
MHT_DAM	11.6	42.9	±8.9	76.6	1.0	13.6%	46.9%	5,668	97,919	499 (10.8)	659 (14.2)	0.8	Public
13. 🖌									C. Kim, I	F. Li, A. Ciptadi, J. Rehg	. Multiple Hypothesis	Tracking Revisit	ed. In ICCV, 2015.
LINF1	15.0	41.0	±9.5	74.8	1.3	11.6%	51.3%	7,896	99,224	430 (9.4)	963 (21.1)	1.1	Public
14. 🖌		L. Fagot-B	ouquet, R	. Audigier, Y. D	home, F. Le	rasle. Improving	Multi-Frame Da	ta Association wit	h Sparse Representa	ations for Robust Near-	Online Multi-Object Tra	acking. In ECCV	(to appear) 2016.

MOTA +13%

CURRENT STATE-OF-THE-ART

Tracker	Avg Rank	↑ M	OTA	MOTP	FAF	MT	ML	FP	FN	ID Sw.	Frag	Hz	Detector
KDNT	9.6	68.2	±12.9	79.4	1.9	41.0 %	19.0 %	11,479	45,605	933 (12.4)	1,093 (14.6)	0.7	Private
1.				F. Yu, W. L	i, Q. Li, Y. L	iu, X. Shi, J. Yan	. POI: Multiple O	bject Tracking wi	ith High Performance	Detection and Appear	ance Feature. In BMTT,	2016, SenseTin	me Group Limited.
POI	7.1	66.1	±13.3	79.5	0.9	34.0%	20.8%	5,061	55,914	805 (11.6)	3,093 (44.6)	9.9	Private
2. 🔘				F. Yu, W. L	i, Q. Li, Y. L	iu, X. Shi, J. Yan	. POI: Multiple O	bject Tracking wi	ith High Performance	Detection and Appear	ance Feature. In BMTT,	2016, SenseTin	me Group Limited.
MCMOT_HDM	9.1	62.4	±10.6	78.3	1.7	31.5%	24.2%	9,855	57,257	1,394 (20.3)	1,318 (19.2)	34.9	Private
3.						B.	Lee, E. Erdenee	e, S. Jin, M. Nam,	, Y. Jung, P. Rhee. M	ulti-Class Multi-Object 1	racking using Changing	using Changing Point Detecti	on. In BMTT, 2016.
NOMTwSDP16	5.3	62.2	±11.0	79.6	0.9	32.5%	31.1%	5,119	63,352	406 (6.2)	642 (9.8)	3.1	Private
4.									W. Choi. Near-On	line Multi-target Trackin	g with Aggregated Loca	al Flow Descript	tor. In ICCV, 2015.
KFILDAwSDP	13.6	57.3	±15.9	77.5	2.6	24.6%	25.3%	15,682	60,252	1,873 (28.0)	2,664 (39.8)	2.2	Private
5. 🔘												Anony	ymous submission
EAMTT	7.2	52.5	±11.4	78.8	0.7	19.0%	34.9%	4,407	81,223	910 (16.4)	1,321 (23.8)	12.2	Private
6. 🔘												Anony	ymous submission
AMPL	6.5	50.9	±7.1	77.0	0.5	16.7%	40.8%	3,229	86,123	196 (3.7)	639 (12.1)	1.5	Private
7. 🔘												Anony	ymous submission

MOTA +22%

WHAT WORKS?

WHAT WORKS?

WHAT WORKS?

CURRENT STATE-OF-THE-ART

Tracker	Avg Rank	↑ MOTA	ΜΟΤΡ	FAF	МТ	ML	FP	FN	ID Sw.	Frag	Hz	Detector
KDNT	9.6	68.2 ±12.9	79.4	1.9	41.0 %	19.0 %	11,479	45,605	933 (12.4)	1,093 (14.6)	0.7	Private
1.			F. Yu, W. L	i, Q. Li, Y. L	iu, X. Shi, J. Yan	. POI: Multiple C	Object Tracking w	ith High Performanc	e Detection and Appear	ance Feature. In BMTT,	2016, SenseTin	ne Group Limited.
POI	7.1	66.1 ±13.3	79.5	0.9	34.0%	20.8%	5,061	55,914	805 (11.6)	3,093 (44.6)	9.9	Private
2. 🔘			F. Yu, W. L	i, Q. Li, Y. L	iu, X. Shi, J. Yan	n. POI: Multiple C	Object Tracking w	ith High Performanc	e Detection and Appear	ance Feature. In BMTT,	2016, SenseTin	ne Group Limited.
MCMOT_HDM	9.1	62.4 ±10.6	78.3	1.7	31.5%	24.2%	9,855	57,257	1,394 (20.3)	1,318 (19.2)	34.9	Private
3.					B	. Lee, E. Erdenee	e, S. Jin, M. Nam	, Y. Jung, P. Rhee. M	ulti-Class Multi-Object	Tracking using Changing	Point Detectio	n. In BMTT, 2016.
NOMTwSDP16	5.3	62.2 ±11.0	79.6	0.9	32.5%	31.1%	5,119	63,352	406 (6.2)	642 (9.8)	3.1	Private
4.								W. Choi. Near-Or	line Multi-target Trackin	Frag Hz 1,093 (14.6) 0.7 rance Feature. In BMTT, 2016, SenseTim 3,093 (44.6) 9.9 rance Feature. In BMTT, 2016, SenseTim 1,318 (19.2) 34.9 Tracking using Changing Point Detection 642 (9.8) 3.1 ing with Aggregated Local Flow Descriptor 2,664 (39.8) 2.2 Anonyr 1,321 (23.8) 12.2 Anonyr 639 (12.1) 1.5 Anonyr	tor. In ICCV, 2015.	
KFILDAwSDP	13.6	57.3 ±15.9	77.5	2.6	24.6%	25.3%	15,682	60,252	1,873 (28.0)	2,664 (39.8)	2.2	Private
5. 🔘											Anony	mous submission
EAMTT	7.2	52.5 ±11.4	78.8	0.7	19.0%	34.9%	4,407	81,223	910 (16.4)	1,321 (23.8)	12.2	Private
6. 🔘											Anony	mous submission
AMPL	6.5	50.9 ±7.1	77.0	0.5	16.7%	40.8%	3,229	86,123	196 (3.7)	639 (12.1)	1.5	Private
7. 🔘											Anony	mous submission

CNN-based appearance features

EVOLUTION OF THE BENCHMARK

EVOLUTION OF THE BENCHMARK

WHAT CHALLENGES LIE AHEAD?

Best performing method for MOT2015

Well-known "solved" sequences reach on average MOTA of 60%

GENERALITY

WHAT ABOUT MOTA?

- Is MOTA the right measure?
- Does it correspond to the human perception of a good tracker?
 - Can we use it as a single measure to classify trackers?

HOT-OR-NOT TRACKER

Multiple Object Tracking Benchmark

people f home O data results -🗄 vis * VQA FAQ 🖈 submit 🗸

Qualitative Video Assessment

The videos may take a moment to load. Please be patient.

Press Play to start both videos simultaneously. After watching the clip, please vote for the one that appears more accurate.

Both results appear equally good

Tracker B

Tracker A

A appears better

B appears better

+) login

🖍 sign up

75% of the votes agree with MOTA

Disagreements come from MOTA differences < 10%

THE FUTURE OF MOTCHALLENGE

biological data

sports data

Expanding

First-person videos

SHARE YOUR TRACKING DATA

THE FUTURE OF MOTCHALLENGE

Open questions

Is this data enough for deep learning?

What would you like to see added?

EXCITING WORKSHOPS AND CHALLENGES!

- 1st Workshop on Benchmarking Multi-Target Tracking organized together with WACV, 2015.
- 2nd Workshop TOMORROW!

www.motchallenge.net/workshops/bmtt2016

THE TEAM

Laura Leal-Taixé Anton Milan

Konrad Schindler Daniel Cremers

Stefan Roth

Ian Reid

TECHNISCHE UNIVERSITÄT DARMSTADT

DAIMLER