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An Efficient Algorithm for the Piecewise
Affine-Linear Mumford-Shah Model

Based on a Taylor Jet Splitting
Lukas Kiefer, Martin Storath, Andreas Weinmann

Abstract—We propose an algorithm to efficiently compute
approximate solutions of the piecewise affine Mumford-Shah
model. The algorithm is based on a novel reformulation of
the underlying optimization problem in terms of Taylor jets.
A splitting approach leads to linewise segmented jet estimation
problems for which we propose an exact and efficient solver.
The proposed method has the combined advantages of prior
algorithms: it directly yields a partition, it does not need an
initialization procedure, and it is highly parallelizable. The
experiments show that the algorithm has lower computation times
and that the solutions often have lower functional values than
the state-of-the-art.

I. INTRODUCTION

Partitioning of images is a central task in computer vision.
In a supervised setup, learning based approaches, most no-
tably convolutional neural networks, have become standard.
If not sufficiently many training data are available, model-
based methods are employed. Classical methods are k-means
clustering, region growing (see e.g. [1]), and the watershed
algorithm (see e.g. [2]). Another popular technique for cluster-
ing (without having to fix the number of clusters in advance)
is based on the mean shift filtering [3], [4]. See [5] for an
overview of image filtering methods.

An active field in image partitioning are variational meth-
ods. The idea is to model the partitioning as the result of
an optimization problem which imposes regularity on both
regions and boundaries [6]. A popular variational approach
to image partitioning is the piecewise constant Mumford-Shah
model. The central idea is to partition the image domain such
that the total boundary length of all segments is small and
such that the induced piecewise constant function approxi-
mates the image well. The model is frequently applied for
unsupervised segmentation of color images [7], [8], depth
images [8], texture images [9], and medical images [10],
[11], to mention only some examples. However, the piecewise
constant model assumption is often restrictive: many types of
images possess linear trends within their segments: consider
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for example the sky in a landscape image, or an object with
an illumination gradient in a conventional image; further, the
bias in a magnetic resonance image, as well as depth and
motion fields show linear trends. In such situations applying
the piecewise constant Mumford-Shah model might lead to
oversegmentation since spurious segments are produced at
steeper slopes; see Figures 1 and 2. A natural way of ac-
counting for that is to employ the piecewise affine Mumford-
Shah model. As the name suggests, it is based on affine-linear
approximations on the segments. More precisely, it is given as
the minimization problem

argmin
u,P

∑
P∈P

{
γ

2
length(∂P ) +

∫
P

|u(x)− f(x)|2 dx
}
,

subject to u|P is affine linear for all P ∈ P.
(1)

The minimum is taken w.r.t. all partitions P of the image
domain Ω ⊂ R2 and all corresponding piecewise affine
functions u on Ω. Here, f : Ω → RK is a vector-valued
input image with K channels, and | · |2 denotes the squared
Euclidean norm in RK . The parameter γ > 0 controls the
tradeoff between the length penalty and the data fidelity term.
Figure 1 illustrates the piecewise constant and the piecewise
affine Mumford-Shah model for a natural image with color
gradients.

Another possibility to account for color gradients in the
image is the piecewise smooth Mumford-Shah model which
penalizes the deviations from piecewise constant functions
controlled by an additional hyperparameter β (instead of en-
forcing piecewise constancy). However, the piecewise smooth
model comes with side-effects: the estimated discontinuity
set is in general not the boundary set of a partition as it
can have open ends (so-called “crack tips”), and it suffers
from the gradient limit effect, i.e. the creation of spurious
discontinuities at steep slopes; see [12], [13] and Figure 2.
Even though linear trends are better representable by the
piecewise smooth Mumford-Shah model than by the piecewise
constant variant, approximating them increases its energy (in
contrast to the piecewise affine variant). Therefore the solution
space of the piecewise smooth model does not contain genuine
piecewise affine functions but only approximations of them.

Depending on the application, the principal interest in
solving (1) can be to find an optimal partition P∗, which may
be used for segmentation or superpixelations as for instance
in [14], [15]; or one can be interested in finding an optimal
piecewise affine function u∗, which may be used for the
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(a) Input (b) Pcw. constant model (c) Pcw. affine model

Fig. 1: The piecewise affine Mumford-Shah model provides improved partitioning results for images with color gradients
compared with the piecewise constant variant.

regularization of flow fields as in [16] or for the guidance of
image filters as in [17]. The focus of this paper is the efficient
computation of the partition.

A. Related Work

Despite their early introduction [12], [13], [18], [19] and
their relatively simple formulation, Mumford-Shah models are
still a very active topic of research; see [15], [20], [21], [22],
[23], [24] to mention only some examples. This is because
they lead to challenging (NP-hard) optimization problems [8],
[25].

We first discuss work related with the piecewise constant
variant which is also widely known as the Potts model and
recently also called `0 gradient smoothing. Classical algo-
rithms for the piecewise constant Mumford-Shah model are
based on simulated annealing [18] and on approximations
by elliptic functionals [26]. Currently popular approaches are
active contours [7], [27], [28], [29], graph cuts [8], [30],
convex relaxations [31], [32], [33], [34], semi-global matching
[35], [36], fused coordinate descent [37], region fusion [22],
iterative thresholding type techniques [20], [38], and alternat-
ing direction method of multipliers [39]. The latter approach
is currently the benchmark in terms of quality according to
the comparison in [22]. Since the problem is computationally
rather expensive, parallelization has recently received a lot of
attention; see [31], [34], [40], [41].

Besides the mentioned challenges of computing the piece-
wise constant Mumford-Shah model, the piecewise affine
case comes with an additional complication: a commonly
used reformulation, which eliminates the dependance on the
partition and which is used in many algorithmic approaches for
the piecewise constant variant, has no direct analogy for the
piecewise affine case. In fact, the variety of algorithms is much
smaller for the piecewise affine case. One can find approaches
based on graduated non-convexity [12], active contours [14],
graph cuts [8], [42], [43], [44] and ADMM splitting [16]. We
discuss these algorithms in more detail in the next subsection.

Further related work is the total generalized variation model
(TGV) [45] which can be seen as an `1-based convex relative
of the piecewise affine Mumford-Shah model. The results of
TGV are approximately piecewise affine functions. In contrast
to the piecewise affine Mumford-Shah model, the solution of
TGV does not yield a partition of the image. In [46], the

authors apply a piecewise linear image model in the context
of the analysis sparsity model in the sense of compressed
sensing. They consider an anisotropic error constraint model.
We notice that the solutions do not yield a partition directly.
We finally mention the related recent work [47] on piecewise
affine estimation in connection with deep edge aware filters.

B. Algorithms for the Piecewise Affine Mumford-Shah Model

One can sort the approaches to the piecewise affine
Mumford-Shah problem into two classes: those that are mainly
interested in finding an approximately optimal partition P∗ and
those that are mainly interested in computing an approximately
piecewise affine estimate u∗. The latter ones, in general,
produce an approximation which does not yield a partition
as we will see below.

Partition-Based Methods: The common starting point is the
formulation of the piecewise affine Mumford-Shah problem in
terms of partitions:

argmin
P

∑
P∈P

{
γ

2
length(∂P )

+

K∑
k=1

min
a,b,c

∫
P

(ax1 + bx2 + c− fk(x))2 dx

}
.

(2)

This formulation gives rise to the following iterative reparti-
tioning scheme

1. Choose an initial partition P0.

2. Iterate until convergence:

a. for all P ∈ Pj , and k = 1, . . . ,K, compute the optimal
affine coefficients,
(a∗, b∗, c∗) = argmin

a,b,c

∑
x∈P

(ax1 + bx2 + c− fk(x))2;

b. compute a partition Pj+1 which is (approximately)
optimal for the determined set of affine coefficients.

While step 2a is a simple linear regression, step 2b is an
NP-hard optimization problem. One possibility to tackle this
problem is to represent the partition by level set functions and
to evolve them guided by a PDE (active contours approach),
see e.g. [14]. Another possibility is to compute the partition
by a min-cut/max-flow algorithm (graph cuts approach) which
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(a) Input (b) Pcw. constant, γ = 0.3 (c) Pcw. smooth, γ = 0.03, β = 10 (d) Pcw. affine, γ = 0.4

Fig. 2: Piecewise affine vs. piecewise smooth Mumford-Shah model for color gradients. Top: solution u∗; center: profiles
of the blue channel, bottom: discontinuity sets. The pcw. constant model yields oversegmentation. The pcw. smooth model
shows spurious discontinuities at steeper slopes (“gradient limit effect”), and the discontinuity set is not the boundary set of a
partition (“crack tips”). The pcw. affine variant recovers the steep gradients and the produced discontinuity set forms a partition.

is used for instance in [48], [49], [44]. The graph cut approach
is often employed because a highly efficient library exists
[8], [50], [51]. We use this method (which uses graph cuts
partitioning) as the benchmark method.

Function-Based Methods without Explicit Partitioning: In
their early work, Blake and Zisserman [12] proposed to use
a graduated non-convexity approach (GNC). The first step of
GNC is to approximate the nonconvex energy function F of
the closely related weak plate model by a convex function
F ∗. Then a whole sequence of energy functions F (p), 1 ≥
p ≥ 0 are constructed such that F (1) = F ∗ and F (0) = F and
F (p) changes in a continuous way from F (1) to F (0). One
sequentially solves the corresponding minimization problems
(e.g. by gradient descent) for 1 ≥ p > 0 and decreasing p
using the results of a higher p as starting point for the next
lower p. Blake and Zisserman point out that GNC shows good
performance for small variation penalties of the weak plate
model. Unfortunately, the piecewise affine Mumford-Shah is
the limiting case of the weak plate model for infinitely large
variation penalty, and the GNC results are less favorable in
this case.

Recently, Fortun et al. [16] proposed a method using a
splitting into coupled subproblems. The splitting is such that
the subproblems boil down to univariate piecewise affine
estimation problems which can be solved efficiently. We will
elaborate on the relations to the proposed method later on
(Section II-F). For now, the important point is that the final
results do not provide partitions.

Advantages and Tradeoffs: The central advantage of the
partition-based approaches is that they explicitly yield a parti-
tion which can be directly employed in a segmentation pipeline
or as a basis for a superpixel generator. Also, if desired, a cor-
responding piecewise affine function can be easily computed
by linear regression on the segments. On the flipside, the exist-
ing partition-based approaches need an initialization procedure
that yields an initial partitioning. Further, their runtime grows
with the number of labels. Additionally, parallelization of the
algorithms is more involved. The advantages of function-based

methods are that they do not need an initialization procedure
in the sense that they do not require an initialization by an
initial partitioning, and that they can be easily parallelized.
The main drawback of function-based methods is that they
only provide a not necessarily piecewise affine approximation
of the piecewise affine function u whose discontinuity set is in
general not the boundary set of a partition. This implies, as an
undesirable side-effect, that the functional value in (2) cannot
be evaluated directly which makes it difficult to quantify the
quality of the algorithms.

C. Contribution

In this paper, we propose a novel algorithm to effi-
ciently compute approximate solutions of the piecewise affine
Mumford-Shah model (1). The key novelties of our method
are as follows:

• we propose a formulation of the piecewise affine
Mumford-Shah model as a minimization problem with
respect to Taylor jets, i.e., fields of local Taylor polyno-
mials. This eliminates the dependance on the partition P
in (1);

• we propose a novel splitting approach based on a jet
coupling which leads to linewise segmented jet estimation
problems;

• we propose an efficient and exact solver for the linewise
segmented jet estimation problems.

The proposed algorithm unifies the advantages of partition-
based methods and those of function-based methods:

• it directly yields a partition P;

• it does not need an initialization procedure;

• its average computation times are almost independent of
the choice of the edge penalty;

• it is highly parallelizable.
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The experimental results show that the proposed method
improves upon the state-of-the-art approach to the piecewise
affine Mumford-Shah model in the sense that the algorithm has
lower computation times and often achieves lower functional
values.

II. PROPOSED METHOD

To keep the presentation focused on the novel concepts, we
carry out the derivations for single-channel images (K = 1)
from Section II-A to Section II-D. The extension for multi-
channel images (K > 1) is discussed in Section II-E.

A. A Jet Formulation of the Piecewise Affine Mumford-Shah
Model

A key point in our derivation is the formulation of problem
(1) in terms of Taylor jets.

The Taylor jet of a function u is a field of Taylor poly-
nomials, i.e., with every point x in the domain Ω of u we
associate the truncated Taylor expansion of u in the point x
up to a certain order k, where k is called the order of the jet.
In the following, we will need the (first order) jet J u of a
function u at the point x ∈ Ω which we define as the first
order polynomial J u(x) given by

J u(x)(z) := Txu(z) = u(x)+ ∂u(x)
∂x1

(z1−x1)+ ∂u(x)
∂x2

(z2−x2)
(3)

where Txu is the (first order) Taylor polynomial of u centered
at x and where z ∈ R2 is the argument of the polynomial.
Summing up, the jet J u : Ω → Π1 is a function on Ω with
values in the space Π1 of bivariate polynomials of order one;
in particular, J u(x) is a polynomial, and J u(x)(z) denotes
the point evaluation of the polynomial J u(x) at the point
z ∈ R2. We note that the variables z in the above definition
(3) are shifted versions of the ones typically used for the jet
formulation. The reason for our choice here is that we will
later need the notion of equality of the polynomials in the
way defined above; this will become clear in the following. It
is a basic but important observation that u is piecewise affine
linear if and only if the jet J u is a piecewise constant field.

This allows us to rewrite (1) in the form

argmin
u,P

∑
P∈P

{
γ

2
length(∂P ) +

∫
P

(u(x)− f(x))2 dx

}
,

subject to J u|P is constant for all P ∈ P.
(4)

If we denote the length of the jump set of the jet J u by
‖∇J u‖0, we can cast (4) into the form

u∗ = argmin
u

γ ‖∇J u‖0 +

∫
Ω

(u(x)− f(x))2 dx. (5)

(We note that the factor 1/2 in the first term of (4), which com-
pensated for the double counting of the boundaries, vanishes
in this formulation.) Instead of minimizing over u directly, we
lift the problem to the jet space. This has the advantage that
we may access the regularizing term more explicitly, while the
data term still has a concrete representation in terms of jets.
An important point is that a jet recovers its underlying function

at x by evaluating the polynomial J u(x) at (the point) x, i.e.
J u(x)(x) = u(x). Using this fact, we can formulate (5), and
thus the initial problem (1), as a minimization problem over
polynomial fields. We obtain the following jet formulation:

J∗ = argmin
J∈PC(Ω;Π1)

γ ‖∇J‖0 +

∫
Ω

(J(x)(x)− f(x))2 dx. (6)

Here, PC(Ω; Π1) denotes the space of piecewise constant
fields of first order polynomials. Note that, as J is a piecewise
constant polynomial field, there is a corresponding piecewise
affine function u with J u = J on the complement of the
discontinuity set; in other words, J is the jet of a piecewise
affine function. This reveals the equivalence of the problems
(6) and (1).

The key advantage of the jet formulation (6) is that the
piecewise affine problem in u has transformed into a piecewise
constant problem in J . In particular, the connected components
of the level sets of J∗ are exactly the segments of the
corresponding partition P∗, and we have u∗(x) = J∗(x)(x)
for all x ∈ Ω.

B. Discretization of the Proposed Jet Formulation
We may adopt a common way of discretizing the length

penalty term in (6),

‖∇J‖0 ≈
∑S

s=1
ωs‖∇dsJ‖0, (7)

see [52], [53], [39]. The terms on the right hand side count the
number of changes of the field J w.r.t. to a direction ds ∈ Z2;
that is,

‖∇dsJ‖0 = |{x ∈ Ω′ : J(x) 6= J(x+ds), x+ds ∈ Ω′}|, (8)

where Ω′ = {1, . . . ,M} × {1, . . . , N} denotes the dis-
cretized domain. The directions ds form a neighborhood
system {d1, . . . dS}, with S ≥ 2. The simplest choice is the
system {e1, e2}, e1 = (1, 0)T , e2 = (0, 1)T , with the weights
ω1,2 = 1. To reduce anisotropy effects, we here focus on the
more isotropic discretization {e1, e2, e1+e2, e1−e2}. We here
use the weights ω1,2 =

√
2 − 1 and ω3,4 = 1 −

√
2

2 used in
[11] which coincide up to normalization with those of [54],
[53].

C. Proposed Jet-Based Splitting Approach
Using the discretization (7) for the proposed jet formulation

(6) we obtain the discretized problem

J∗ = argmin
J:Ω′→Π1

γ

S∑
s=1

ωs‖∇dsJ‖0 +
∑
x∈Ω′

(J(x)(x)− f(x))2.

(9)

Our goal is to compute approximate solutions of (9). Towards
an optimization algorithm, we first split up the target J into S
polynomial fields, J1, . . . , JS , subject to the constraints that
they are all equal:

argmin
J1,...,JS

S∑
s=1

{
γωs‖∇dsJs ‖0 +

1

S

∑
x∈Ω′

(Js(x)(x)− f(x))2
}

subject to Js = J t for all 1 ≤ s < t ≤ S.
(10)
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Since two bivariate first-order polynomials are equal if and
only if their evaluation in three non-collinear points in R2 is
equal, we can rewrite (10) as

argmin
J1,...,JS

S∑
s=1

{
γωs‖∇dsJs ‖0 +

1

S

∑
x∈Ω′

(Js(x)(x)− f(x))2
}

s.t. Js(x)(x) = J t(x)(x),

Js(x)(x+ e1)− Js(x)(x) = J t(x)(x+ e1)− J t(x)(x),

Js(x)(x+ e2)− Js(x)(x) = J t(x)(x+ e2)− J t(x)(x),

for all x ∈ Ω′, and all s, t with 1 ≤ s < t ≤ S.
(11)

Recall e1 = (1, 0)T , e2 = (0, 1)T denote the coordinate direc-
tions. It is convenient to introduce the following abbreviations

u(x) := uJ(x) := J(x)(x),

a(x) := aJ(x) := J(x)(x+ e1)− J(x)(x),

b(x) := bJ(x) := J(x)(x+ e2)− J(x)(x),

for the function value at the base point x and the slopes of
the polynomial J(x). Then, the constraint in (11) reads

us(x) = ut(x), as(x) = at(x), bs(x) = bt(x), (12)

for all x ∈ Ω′, and all s, t with 1 ≤ s < t ≤ S. We note that
the presented jet formulation results in rather strong coupling
incorporating also the slopes/derivatives of the considered
polynomials.

We now decompose the constrained problem into coupled
subproblems using an ADMM approach. That is, we form the
augmented Lagrangian form of (11) and iteratively perform a
block-coordinate-wise minimization and gradient ascent steps
on the Lagrange multipliers. (See [55] for an overview on
ADMM.) We note that ADMM schemes often work well
for nonconvex problems; see, e.g., [56], [57], [58], [24]. The
augmented Lagrangian form of (11) is given by

Lµ,ν({Js}, {λs,t}, {τs,t}, {ρs,t})

=
∑S

s=1

{
ωsγ‖∇dsJs‖0 + 1

S ‖u
s − f‖2

+
∑S

t=s+1

(
µ
2

∥∥us − (ut − λs,t

µ )
∥∥2 − 1

2µ‖λ
s,t‖2

+ ν
2

∥∥as − (at − τs,t

ν )
∥∥2 − 1

2ν ‖τ
s,t‖2

+ ν
2

∥∥bs − (bt − ρs,t

ν )
∥∥2 − 1

2ν ‖ρ
s,t‖2

)}
,

(13)

where the λs,t, τs,t, ρs,t ∈ RM×N denote the Lagrange multi-
pliers and ‖ · ‖ is the Frobenius norm, i.e. ‖u‖2 = (

∑
i,j u

2
ij)

for u ∈ RM×N . The parameters µ, ν > 0 determine how
strong differences between the split variables are penalized.
Note that we utilize two different coupling parameters: one
for the slope variables a, b and one for the base point variable
u. This is because slopes and base points typically live on
different scales.

In each iteration we minimize the Lagrangian L w.r.t. the
polynomial fields J1, ..., JS . For a fixed s the according
minimization problem reads

argmin
J
Lµ,ν = argmin

J

{
ωsγ‖∇dsJ‖0 + 1

S ‖u− f‖
2

+

S∑
t=s+1

(
µ
2 ‖u− (ut − λs,t

µ )‖2 + ν
2‖a− (at − τs,t

ν )‖2

+ ν
2‖b− (bt − ρs,t

ν )‖2
)

+

s−1∑
r=1

(
µ
2 ‖u− (ur + λr,s

µ )‖2 + ν
2‖a− (ar + τr,s

ν )‖2

+ ν
2‖b− (br + ρr,s

ν )‖2
)}
.

(14)

Note that all other terms in (13) do not depend on Js, so we
dropped them. In the following we bring (14) into a convenient
form. To this end, we will use repeatedly the fact that∑N

i=1
xi(p− ti)2 =

(∑N

i=1
xi
)(
p−

∑N
i=1 tixi∑N
i=1 xi

)2
+C (15)

holds for p, t1, ..., tN ∈ R and x1, ..., xN > 0 and a constant
C that does not depend on p. Initially, this allows us to rewrite
the summands in (14) and we get

argmin
J

{
ωsγ‖∇dsJ‖0 + 1

S ‖u− f‖
2

+ (S−s)µ
2

∥∥u− ∑S
t=s+1(ut − λs,t

µ )

(S − s)
∥∥2

+ (s−1)µ
2

∥∥u− ∑s−1
r=1(ur + λr,s

µ )

(s− 1)

∥∥2

+ (S−s)ν
2

∥∥a− ∑S
t=s+1(at − τs,t

ν )

(S − s)
∥∥2

+ (s−1)ν
2

∥∥a− ∑s−1
r=1(ar + τr,s

ν )

(s− 1)

∥∥2

+ (S−s)ν
2

∥∥b− ∑S
t=s+1(bt − ρs,t

ν )

(S − s)
∥∥2

+ (s−1)ν
2

∥∥b− ∑s−1
r=1(br + ρr,s

ν )

(s− 1)

∥∥2
}
.

(16)

Again we dropped terms that do not depend on J . For
readability we introduce the following abbreviations for the
sums in (16):

Λ =
∑S

t=s+1
(ut − λs,t/µ), Ψ =

∑S

t=s+1
(at − τs,t/ν),

∆ =
∑S

t=s+1
(bt − ρs,t/ν), Γ =

∑s−1

r=1
(ur + λr,s/µ),

Φ =
∑s−1

r=1
(ar + τ r,s/ν), Θ =

∑s−1

r=1
(br + ρr,s/ν).

After applying (15) to all but the first line of (16) we obtain

argmin
J

ωsγ‖∇dsJ‖0 + 1
S ‖u− f‖

2 + (S−1)µ
2

∥∥u− Λ+Γ
S−1

∥∥2

+ (S−1)ν
2

∥∥a− Ψ+Φ
S−1

∥∥2
+ (S−1)ν

2

∥∥b− ∆+Θ
S−1

∥∥2
.

(17)
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A final application of (15) to both remaining terms depending
on u in (17) leads to

argmin
J

ωsγ‖∇dsJ‖0 + 2+µS(S−1)
2S

∥∥u− 2f+µS
(

Λ+Γ
)

2+µS(S−1)

∥∥2

+ (S−1)ν
2

∥∥a− Ψ+Φ
S−1

∥∥2
+ (S−1)ν

2

∥∥b− ∆+Θ
S−1

∥∥2
.

(18)

Multiplying (18) by 2
(S−1)ν , we get

argmin
J

2ωsγ
(S−1)ν ‖∇dsJ‖0 + 2+µS

νS

∥∥u− 2f+µS
(

Λ+Γ
)

2+µS(S−1)

∥∥2

+
∥∥a− Ψ+Φ

S−1

∥∥2
+
∥∥b− ∆+Θ

S−1

∥∥2
.

(19)

Together with the gradient ascents on the Lagrange multi-
pliers we derive the iterative procedure

(Js)j+1 =

argmin
J

2ωsγ
(S−1)νj

‖∇dsJ‖0 +
2+µjS
νjS
‖u− (ws)j‖2

+ ‖a− (ys)j‖2 + ‖b− (zs)j‖2 ∀s = 1, ..., S,

(λs,t)j+1 = (λs,t)j + µj((u
s)j+1 − (ut)j+1) ∀s < t,

(τs,t)j+1 = (τs,t)j + νj((a
s)j+1 − (at)j+1) ∀s < t,

(ρs,t)j+1 = (ρs,t)j + νj((b
s)j+1 − (bt)j+1) ∀s < t,

(20)

where the superscript j denotes the iteration number and where
we used the abbrevations

(ws)j =

2f+µjS

(
S∑

t=s+1

(
(ut)j− (λs,t)j

µj

)
+
s−1∑
r=1

(
(ur)j+1+

(λr,s)j+1

µj

))
2+µjS(S−1) ,

(ys)j = 1
S−1

∑S

t=s+1

(
(at)j − (τs,t)j

νj

)
+ 1

S−1

∑s−1

r=1

(
(ar)j+1 + (τr,s)j+1

νj

)
,

(zs)j = 1
S−1

∑S

t=s+1

(
(bt)j − (ρs,t)j

νj

)
+ 1

S−1

∑s−1

r=1

(
(br)j+1 + (ρr,s)j+1

νj

)
.

As it is common when dealing with non-convex problems,
we employ increasing coupling sequences (µj)j∈N, (νj)j∈N as
coupling parameters. Note that the computation of ws, ys, zs

and the Lagrange multiplier updates only involve pointwise
basic arithmetic operations. We provide a pseudocode for the
ADMM strategy in Algorithm 1 in the appendix.

The expensive part of (20) consists of solving the S non-
convex problems w.r.t. the targets J (first equation of (20))
which are – omitting the indices – of the prototypical form

argminJ γ′ ‖∇dJ‖0+η2‖u−w‖2+‖a−y‖2+‖b−z‖2, (21)

for some direction d of the neighborhood system and some
γ′, η > 0. First, the problem (21) can be decomposed into
pathwise subproblems as follows: let Lx be the straight line
passing through x in direction d and let Q be the set of all
such lines, Q = {Lx : x ∈ Ω′}. (Note that Q – as a set –

contains each line exactly once.) As Q forms a partition of
the image domain, we can reformulate (21) as

(J ′)∗ =

argmin
J:Ω′→Π1

∑
Q∈Q

{
γ′
∣∣{x ∈ Q : J(x) 6= J(x+ d), x+ d ∈ Q}

∣∣
+
∑
x∈Q

(
η2(u(x)− w(x))2 + (a(x)− y(x))2

+ (b(x)− z(x))2
)}
.

(22)

This reveals that the functional consists of summands that
operate exclusively within their respective lines. Therefore it is
sufficient to minimize the functional for each line separately;
that is, computing for all Q ∈ Q

(J ′Q)∗ =

argmin
J′:Q→Π1

γ′
∣∣{x ∈ Q : J ′(x) 6= J ′(x+ d), x+ d ∈ Q}

∣∣
+
∑
x∈Q

(
η2(u(x)− w(x))2 + (a(x)− y(x))2

+ (b(x)− z(x))2
)
,

(23)

and setting (J ′)∗(q) = (J ′Q)∗(q) for all q ∈ Q. Note that we
can solve (23) for all lines Q ∈ Q in parallel. So, a number
of min{M,N} problems can be solved in parallel. Here, we
exploit this by using multicore CPU processing. Parallelization
on the GPU gets reasonable for larger image sizes.

D. Efficient Solution of Linewise Segmented Jet Problems

The computational effort of the proposed algorithm is
dominated by solving the linewise jet problems (23). To obtain
an efficient overall algorithm, we here propose a fast solver.

Let Q be an arbitrary line in direction d, parametrized
as Q = (q1, q2 . . . , qL) with ql = q1 + (l − 1)d. Our first
crucial observation is that (23) essentially is a one-dimensional
segmented least squares problem on the line Q. Solving it
consists of two steps. At first, we compute an optimal partition
I∗ on the line Q, i.e., a minimizer of

I∗ = argmin
I partition of Q

γ′ |I|+
∑

I∈I
EI . (24)

Here EI denotes the residual sum of squares of the best
approximating bivariate linear polynomial p with p(x) =
αx1 + βx2 + δ on the “interval” I = {ql, ql+1, . . . , qr} of
the data term in (23):

EI = min
p∈Π1

∑
x∈I

η2(p(x)−w(x))2 +(α−y(x))2 +(β−z(x))2.

(25)
After having determined an optimal partition I∗ and the
minimizing argument in (25), denoted by p∗I for all I ∈ I∗,
the solution (J ′Q)∗ is given on each segment I ∈ I∗ by
(J ′Q)∗(q) = p∗I for all q ∈ I . This constitutes the second
step and yields a solution of (23) provided we have a solution
for (24).
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(a) Input (b) GNC (c) FPAME

(d) GC (64 labels) (e) GC (256 labels) (f) Proposed

Fig. 3: Qualitative comparison of algorithms. Upper half: results u∗; lower half: edge sets derived from u∗ for the partition-
free methods (GNC and FPAME), and boundaries of partition P∗ for the partition-based methods (GC and the proposed
method), respectively. The edge sets of the partition-free methods do not always consist of closed curves, and are not the
boundaries of a partition.

Univariate partitioning problems of the form (24) can be
solved by a standard dynamic programming scheme; see e.g.
[59], [60]. Its basic idea is that the functional value in (24),
denoted by B∗, satisfies the Bellman equation

B∗r = min
l=1,...,r

{
E{ql,...,qr} + γ +B∗l−1

}
, (26)

where we let B∗0 = −γ. By the dynamic programming
principle, we successively compute B∗1 , B

∗
2 , until we reach

B∗L. As our primary interest is the optimal partition I∗, rather
than the minimal functional value B∗L, we keep track of a
corresponding partition. An economic way to do so is to store
at step r the minimizing argument l∗ of (26) as the value Cr
so that C encodes the boundaries of an optimal partition. We
refer to [60] for a detailed description.

To implement the dynamic program for problem (24) ac-
cording to (26) we have to solve O(L2) problems of the
form (25). More precisely, (26) reveals that the polynomial
approximation errors EI have to be computed for all O(L2)
“intervals” of the line Q. As (25) leads to a linear regression
problem we could use a standard solver. But since we have
to compute O(L2) such problems, there is need for a tailored
computation scheme to obtain an efficient overall algorithm.
We here utilize such a tailored scheme exploiting additional
structure of the problem inspired by [61]. To this end, we
formulate (25) as the least square problem

E{ql,...,qr} = min
α,β,δ

‖Ah(α, β, δ)T − glr‖2, (27)

where h = r− l+1 and the (3h×3)-matrix Ah and the vector

glr are given by

Ah =



ηd1 ηd2 η
1 0 0
0 1 0

...
hd1η hd2η η

1 0 0
0 1 0


, and glr =



ηwl
yl
zl
...

ηwr
yr
zr


. (28)

We use the QR algorithm to solve (27). Two points are crucial
for fast solver: first, we exploit that the QR algorithm directly
computes E{ql,...,qr} which appears as the squared residual
norm after the elimination. This way we do not have to
compute a minimizer (α∗, β∗, δ∗) explicitly. Secondly, we get
E{ql−1,...,qr} from E{ql,...,qr} by updating the QR decompo-
sition of Ah to one of Ah+1 in O(1) by employing Givens
rotations. Thus, we obtain an O(1) scheme for computing the
EI . In total the worst case complexity of solving (23) for a
line Q is O(L2).

E. Extension for Multichannel Images

We first note that solving the piecewise affine Mumford-
Shah problem (1) for multichannel images f : Ω → RK is
not equivalent to solving the single-channel variant channel
by channel. The latter approach typically leads to undesired
artifacts as the partition boundaries are not enforced to be
aligned over the channels.

To extend the proposed approach to the multichannel piece-
wise affine Mumford-Shah problem, we consider the first order
Taylor jet of u : Ω→ RK which is given by

J u(x) = Txu = (Txu1, ..., TxuK)T , (29)
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Fig. 4: Qualitative comparison to graph cuts. The proposed approach and the graph cut approach both provide reasonable
partitions yet with some slight differences. For example at γ = 0.5, graph cuts still opens a segment for the water, but not for
the fence. In the proposed approach, this is vice versa. As a general tendency, we observe that the proposed approach results
in more segments throughout all γ-levels.

and which consists of the first order Taylor expansions of the
component functions ui : Ω→ R of u. Then, the multichannel
version of the jet formulation (6) is given by

J∗ = argmin
J∈PC(Ω;(Π1)K)

γ ‖∇J‖0+

K∑
k=1

∫
Ω

(Jk(x)(x)−fk(x))2 dx.

(30)
where the minimum is taken over piecewise constant multi-
channel jets. As the domain of the image does not change in
the multichannel case, the discretization of the jump penalty in
(7) remains unchanged. Note that the alignment of the partition
boundaries is enforced which can be best seen when looking
at the counting of the directional differences in (8): in the
multichannel case, we have that J(x) 6= J(x+ds) if and only
if they are different in at least one component, i.e., if and
only if Jk(x) 6= Jk(x+ ds) for at least one k ∈ {1, . . . ,K}.
That means, opening a “jump” between x and x + ds in all
channels has no extra costs compared to opening a jump in
a single channel. The further derivation of the algorithm is
analogous to the single channel case and can be found in the
appendix.

F. Relation to other Approaches

In contrast to this work, the method in [16] is based on
a coupling of the function values u only. In view of the
jet formulation of the piecewise affine model a “complete”

coupling requires also to couple the slopes. Hence, the method
in [16] is the straightforward extension of the method in [39]
and can be seen as a relaxation of the proposed method. The
approach in [16] leads to standard linewise piecewise affine
subproblems instead of the jet estimation problems needed in
this work. In contrast, the proposed method requires a tailored
subproblem solver, see Section II-D. Compared with [16] a
main advantage of the proposed method is that it yields a
partition directly.

Another related problem is given (in a discretized version)
by

argmin
u:Ω′→R

γ
∑S

s=1
ωs‖∇2

dsu‖0+
∑

x∈Ω′
(u(x)−f(x))2. (31)

We stress that this is not equivalent to the piecewise affine
Mumford-Shah model. The relevant difference is that ‖∇2

dsu‖0
counts the number of kinks of u instead of the number of
affine coefficient changes. The practical consequence is that
the functional favors solutions which tend to have kinks rather
than jumps.

III. EXPERIMENTAL RESULTS

We have implemented the proposed method in C++. As
initial parameters we set µ0 = 0.1γ, ν0 = 150γµ0. In each
iteration, we repeated scheme (20) 5 times with the same
value for µ, ν. Then we continued with the intermediate result
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Fig. 5: Quantitative evaluation: iterations vs. energies. The
plot shows the energy value after each iteration for the results
of the proposed method in Figure 4. We observe an overall
energy decrease in the iterations.

TABLE I: Quantitative evaluation: energies. Mean energies
over the Berkeley test set for the methods which allow to
directly evaluate the functional value.

γ = 0.05 0.15 0.50 1.00 2.00

GC (64 labels) 1802.2 3180.3 5484.8 7324.7 9551.5
GC (256 labels) 1802.1 3178.2 5480.7 7317.5 9526.4
Proposed 1801.6 3196.2 5480.1 7267.7 9468.6
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Fig. 6: Quantitative evaluation: runtimes. Average runtimes
for the Berkeley test set. The average computation times of the
proposed approach are almost constant w.r.t. the edge penalty.

with lowest energy and increased µ, ν by the factor ϕ to
improve the results w.r.t. the energy value. (Note that we also
always observe convergence when we omit such repetitions.)
We observed both visually and quantitatively appealing results
for the initial choice of ϕ = 1.7 which is set to ϕ = 1.3
after a relative decrease of energy greater than 2 · 10−2 was
observed. The iteration was stopped when the maximum norm
of the difference of the split variables of the compass directions
e1, e2 was smaller than 10−4.

We compare the proposed approach to graduated non-
convexity (GNC), the method of [16] (FPAME), and the
iterative repartitioning scheme based on graph cuts (GC). We
have implemented GNC following the description in [12].
Recall that GNC solves a relaxed problem depending on a
variation parameter. We tested several such parameters, and
obtained the best visual results for the value 54. For FPAME,
we adapted the method [16] to the `2 data term. Since GNC
and FPAME do not directly yield a partition we extracted their
edge sets by thresholding on the second order finite differences
as in [12], [16]. For the iterative repartitioning scheme, we

used the α-expansion algorithm of the toolbox GCO v3.0 [8],
[50], [51]. To get a reasonable initial partition P0 we extracted
a subset of L color values from the image and performed a
piecewise constant partitioning with these initial labels. Then
we proceeded with the iterative repartitioning approach until
the relative improvement of the energy was less than 10−3 or
after a maximum number of 10 iterations was reached. All
experiments were conducted on a workstation (Intel XeonE5-
2620v4, 2.10GHz, 16 cores, 256 GB RAM).

A qualitative comparison is given in Figure 3. We observe
that GNC does not give a genuine piecewise affine estimate.
The edge sets of GNC and FPAME have open ends. Hence,
they are not the boundaries of a partition, and so GNC and
FPAME do not allow for an evaluation of the functional value
which hinders a quantitative evaluation in terms of the energy.
(Note that [12], [16] also do not provide a postprocessing
which we could use to obtain a partition.) Thus, in the follow-
ing quantitative evaluation, we focus on a detailed comparison
to GC.

For the quantitative evaluation, we compare our method to
GC with respect to energy value and runtime. We first observe
that the results of GC are influenced by the number of chosen
initial labels; in most yet not all cases, choosing more labels
leads to a lower energy value but also increases the runtime;
see Figures 3, 4. Figure 5 shows the value of the energy after
each iteration of the proposed method for the results in Figure
4. In the corresponding experiments, we compare our approach
to GC with a smaller and a larger number of initial labels
(64 and 256). As data set we used the 200 test images of
the Berkeley segmentation data set [62]. Table I reveals that
the proposed method gives lower mean energies (w.r.t. the
considered piecewise affine Mumford-Shah model) than GC
for 4 out of 5 edge penalties. Further, the runtimes of the
proposed method are lower for all edge penalties, most notably
for the small ones, see Figure 6. Selected examples are shown
in Figure 7. We refer to the supplementary for further results.

In all our experiments, we observed the convergence of the
proposed scheme. We point out that for this kind of problems
theoretical convergence results are rather weak in general.
In particular, also for the state-of-the-art method based on
iterative application of graph cuts (we compare with here)
the convergence is observed only empirically as well. Further
theoretical investigation of convergence is an interesting topic
for future work.

IV. DISCUSSION

We have studied the piecewise affine Mumford-Shah model
which is a variational model for image partitioning. De-
termining approximate solutions of this model is a chal-
lenging problem. It requires a higher computational effort
than employing classical non-variational clustering methods
such as the k-means algorithm or the mean shift algorithm
for partitioning. However, in contrast to these methods, the
piecewise affine Mumford-Shah model incorporates the total
length of the segment boundaries in its regularizing term and,
on each segment, the input image is approximated by an affine
function.
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GC (256 labels) Proposed

E = 4921.8; 787.2s E = 4814.5; 126.4s

E = 3517.7; 533.2s E = 3500.4; 147.6s

E = 4333.7; 423.9s E = 4329.4; 124.9s

E = 3952.8; 554.3s E = 3775.0; 117.6s

E = 1419.3; 1296.5s E = 1418.4; 195.3s

Fig. 7: Example results for the Berkeley data set. From left to right: five images from the BSD500, results of the graph cut
approach (256 initial labels), and results of the proposed approach. The model parameter is γ = 0.5. Energies and runtimes
are reported below the images.
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We have proposed an efficient algorithm for computing
approximate solutions of the piecewise affine Mumford-Shah
model. A novel formulation of the problem in terms of Taylor
jets allowed us to invoke a splitting into few tightly coupled
jet-subproblems for which we developed an efficient and exact
solver. We have seen that, in contrast to GNC and FPAME, the
proposed method provides a genuine partition of the image.
The experiments showed that the proposed approach yields
results with mostly lower average model energies than those
of the benchmark approach based on graph cuts. Hence, the
model energy is efficiently minimized. At the same time,
it needs less computation time than the benchmark method,
especially for small edge penalties.
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APPENDIX

Pseudo Code for the ADMM Strategy

Algorithm 1: ADMM strategy for the piecewise
affine-linear Mumford-Shah problem

Input: Image f ∈ Rm×n; model parameter γ > 0; neighborhood
system {d1, . . . , dS} and weights {ω1, . . . , ωS}; stopping
paramter ξ; coupling sequences (µj)j∈N, (νj)j∈N

Output: Piecewise constant first order jet J∗ = (u∗, a∗, b∗)

1 Initialize Js = (us, as, bs) = (f, 0, 0) for all s = 1, . . . , S;
λs,t, τs,t, ρs,t = 0 for all 1 ≤ s < t ≤ S

2 j ← 1

3 repeat
4 for s = 1, . . . , S do

/* Compute data for jet subproblems */

5 ws ←
2f+µjS

(
S∑

t=s+1

(
ut−λ

s,t

µj

)
+
s−1∑
r=1

(
ur+λr,s

µj

))
2+µjS(S−1)

6 ys ←
1

S−1

∑S
t=s+1

(
at − τs,t

νj

)
+ 1
S−1

∑s−1
r=1

(
ar + τr,s

νj

)
7 zs ← 1

S−1

∑S
t=s+1

(
bt− ρ

s,t

νj

)
+ 1
S−1

∑s−1
r=1

(
br+ ρr,s

νj

)
/* Solve jet subproblems linewise w.r.t. direction ds */

8 Js ← argminJ
2ωsγ

(S−1)νj
‖∇dsJ‖0 +

2+µjS

νjS
‖u−

ws‖2 + ‖a− ys‖2 + ‖b− zs‖2
9 end

/* Lagrange multiplier update */
10 for s = 1, . . . , S do
11 for t = s+ 1, . . . , S do
12 λs,t ← λs,t + µj(u

s − ut)
13 τs,t ← τs,t + νj(a

s − at)
14 ρs,t ← ρs,t + νj(b

s − bt)
15 end
16 end

/* Increase coupling parameters */
17 µj ← µj+1, νj ← νj+1

18 j ← j + 1

19 until ‖J1 − J2‖∞ < ξ;

20 return J∗ = 1
S

∑S
s=1 J

s

Details for the Piecewise-Affine Mumford-Shah Model in the
Multivariate Case

Discretized Problem: Starting from (30) in analogy to the
derivation starting from (6) in the single channel case we
obtain the discretized problem

J∗ = argmin
J:Ω′→(Π1)K

γ

S∑
s=1

ωs‖∇dsJ‖0

+
∑
x∈Ω′

∑
k

(Jk(x)(x)− fk(x))2.

(32)

Then the analogue of the splitting (10) in single channel case
becomes

argmin
J1,...,JS

γ
∑
s

ωs‖∇dsJs‖0 +
1

S

∑
x∈Ω′

∑
k

(Jsk(x)(x)− fk(x))2

s.t. Js = J t for all 1 ≤ s < t ≤ S.
(33)

We rewrite (33) in the way of (11) which gives

argmin
J1,...,JS

S∑
s=1

{
γωs‖∇dsJs ‖0

+
1

S

∑
x∈Ω′

∑
k

(Jsk(x)(x)− fk(x))2
}

s.t. Js(x)(x) = J t(x)(x),

Js(x)(x+ e1)− Js(x)(x) = J t(x)(x+ e1)− J t(x)(x),

Js(x)(x+ e2)− Js(x)(x) = J t(x)(x+ e2)− J t(x)(x),

for all x ∈ Ω′, and all s, t with 1 ≤ s < t ≤ S.
(34)

The Lagrangian of (34) which corresponds to (13) in the uni-
variate case is now understood w.r.t. the Lagrange multipliers
λs,t, τs,t, ρs,t ∈ RM×N×K and the squared Frobenius norm
‖u‖2 =

∑
i,j,k u

2
ijk.

Univariate Subproblems.: The resulting univariate subprob-
lems in (23) for a fixed line Q have now the prototypical form

(J ′Q)∗

= argmin
J′:Q→(Π1)K

γ′|{x ∈ Q : J ′(x) 6= J ′(x+ d), x+ d ∈ Q}|

+
∑
x∈Q

∑
k

(
η2(uk(x)− wk(x))2 + (ak(x)− yk(x))2

+ (bk(x)− zk(x))2
)
.

(35)

Concerning efficiently solving linewise segmented multichan-
nel jet problems as demonstrated section 2.4 in the main text
one has to mind that EI denotes the sum over all channels
k of the residual sum of squares of the best approximating
bivariate polynomial, that is,

EI =
∑
k

min
p∈Π1

η2(p(x)−wk(x))2+(α−yk(x))2+(β−zk(x))2

(36)
The least squares formulation of (36) on the discrete “interval”
(ql, ..., qr) is

E{ql,...,qr} =
∑
k

min
α,β,δ

‖Ah(α, β, δ)T − glr:,k‖2 (37)
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with Ah like in the main text (recall h = r − l + 1) and

glr =



ηw11 . . . ηw1K

y11 . . . y1K

z11 . . . z1K

...
...

ηwl1 . . . ηwlK
yl1 . . . ylK
zl1 . . . zlK


. (38)
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