
End-to-end Learning of Deterministic Decision Trees

Thomas Hehn Fred A. Hamprecht
HCI/IWR, Heidelberg University

{thomas.hehn,fred.hamprecht}@iwr.uni-heidelberg.de

Abstract

Conventional decision trees have a number of favor-
able properties, including interpretability, a small compu-
tational footprint and the ability to learn from little train-
ing data. However, they lack a key quality that has helped
fuel the deep learning revolution: that of being end-to-end
trainable, and to learn from scratch those features that best
allow to solve a given supervised learning problem. Recent
work (Kontschieder 2015) has addressed this deficit, but at
the cost of losing a main attractive trait of decision trees:
the fact that each sample is routed along a small subset of
tree nodes only. We here propose a model and Expectation-
Maximization training scheme for decision trees that are
fully probabilistic at train time, but after a deterministic
annealing process become deterministic at test time. We
also analyze the learned oblique split parameters on im-
age datasets and show that Neural Networks can be trained
at each split node. In summary, we present the first end-
to-end learning scheme for deterministic decision trees and
present results on par with or superior to published stan-
dard oblique decision tree algorithms.

1. Introduction
When selecting a supervised machine learning tech-

nique, we are led by multiple and often conflicting criteria.
These include: how accurate is the resulting model? How
much training data is needed to achieve a given level of ac-
curacy? How interpretable is the model? How big is the
computational effort at train time? And at test time? How
well does the implementation map to the available hard-
ware?

These days, neural networks have superseded all other
approaches in terms of achievable accuracy of the predic-
tions; but state of the art networks are not easy to interpret,
are fairly hungry for training data, often require weeks of
GPU training and have a computational and memory foot-
print that rules out their use on small embedded devices.
Decision trees achieve inferior accuracy, but are fundamen-
tally more frugal.

Both neural networks and decision trees are composed
of basic computational units, the perceptrons and nodes, re-
spectively. A crucial difference between the two is that in
a standard neural network, all units are being evaluated for
every input; while in a decision tree with I inner split nodes,
only O(log I) split nodes are visited. That is, in a decision
tree, a sample is routed along a single path from the root to
a leaf, with the path conditioned on the sample’s features.

It is this sparsity of the sample-dependent computational
graph that piques our interest in decision trees; but we also
hope to profit from their ability to learn their comparatively
few parameters from a small training set, and their relative
interpretability.

One hallmark of neural networks is their ability to learn a
complex combination of many elementary decisions jointly,
by end-to-end training using backpropagation. This is a fea-
ture that has so far been missing in deterministic decision
trees, which are usually constructed greedily without sub-
sequent tuning. We here propose a mechanism to remedy
this deficit.

1.1. Contributions

• We propose a decision tree whose internal nodes are
probabilistic and hence differentiable at train time. As
a consequence, we are able to train the internal nodes
jointly in an end-to-end fashion. This is true for linear
nodes, but the property is maintained for more com-
plex nodes, such as small Convolutional Neural Net-
works (CNNs) (section 3.4).

• We derive an expectation-maximization style algo-
rithm for finding the optimal parameters in a split node
(section 3.3). We develop a probabilistic split crite-
rion that generalizes the long-established information
gain [23]. The proposed criterion is asymptotically
identical to information gain in the limit of very steep
non-linearities, but allows to better model class over-
lap in the vicinity of a split decision boundary (sec-
tion 3.2).

• We demonstrate good results by making the nodes de-
terministic at test time, sending each sample along a

1

ar
X

iv
:1

71
2.

02
74

3v
1

 [
st

at
.M

L
]

 7
 D

ec
 2

01
7

unique path of only O(log I) out of the I inner nodes
in a tree. We evaluate the performance of the pro-
posed method on the same datasets as used in related
work [22] (section 4.1) and find steeper learning curves
with respect to tree depth, as well as higher overall ac-
curacy. We show the benefit of regularizing the spatial
derivatives of learned features when samples are im-
ages or image patches (section 4.2). Finally, we report
preliminary experiments with minimalistic trees with
CNNs as split feature.

2. Related work
Decision trees and decision tree ensembles, such as ran-

dom forests [1], are widely used for computer vision [4] and
have proven effective on a variety of classification tasks [7].
In order to improve their performance for a specific task,
it is common practice to engineer its features to a specific
task [8, 14, 16]. Oblique linear and non-linear classifiers us-
ing more than one feature at a time have been benchmarked
in [18], but the available algorithms are, in contrast to our
approach, limited to binary classification problems.

There have been several attempts to train decision trees
using gradient optimization techniques for more complex
split functions. Similarly to our approach, [19] have suc-
cessfully approximated information gain using a sigmoid
function and a smoothness hyperparameter. However, that
approach does not allow joint optimization of an entire tree.

In [22], the authors also propose an algorithm for op-
timization of an entire tree with a given structure. They
show a connection between optimizing oblique splits and
structured prediction with latent variables. As a result, they
formulate a convex-concave upper bound on the tree’s em-
pirical loss. In order to find an initial tree structure, the
work also relies on a greedy algorithm, which is based on
the same upper bound approach [21]. Their method is re-
stricted to linear splits and relies on the kernel trick to intro-
duce higher order split features as opposed to our optimiza-
tion, which allows more complex split features.

Other advances towards gradient-based decision tree op-
timization rely on either fuzzy or probabilistic split func-
tions [28, 13, 10]. In contrast to our approach, the assign-
ment of a single sample to the leaves remains fuzzy, re-
spectively probabilistic, during prediction. Consequently,
all leaves and paths need to be evaluated for every sample,
which annihilates the computational benefits of trees.

We build on reference [13], which is closest to our work.
The authors use sigmoid functions to model the probabilis-
tic routes and employ the same log-likelihood objective.
In contrast to their work, we derive the alternating opti-
mization using the Expectation-Maximization approach as
in [11] and aim for a deterministic decision tree for pre-
diction. Also, they start from a random, but balanced tree,
because their algorithm does not learn the structure of the

tree.
Finally, connections between neural networks and deci-

sion tree ensembles have been examined. In [27, 29] deci-
sion tree ensembles are cast to neural networks, which en-
ables gradient descent training. As long as the structure of
the trees is preserved, the optimized parameters of the neu-
ral network can also be mapped back to the random forest.
Subsequently, [25] cast stacked decision forests to convolu-
tional neural networks and found an approximate mapping
back. In [9, 17] several models of neural networks with sep-
arate, conditional data flows are discussed.

Our work builds on various ideas of previous work, how-
ever, none of these algorithms learn deterministic decision
trees with arbitrary split functions in an end-to-end fashion.

3. Methods

Consider a classification problem with input space X ⊂
Rp and output space Y = {1, ...,K}. The training set is
defined as {x1, ...,xN} = Xt ⊂ X with corresponding
classes {y1, ..., yN} = Yt ⊂ Y . We propose training a
probabilistic decision tree model, which becomes determin-
istic at test time.

3.1. Standard decision tree and notation

In binary decision trees (figure 1c), split functions s :
R → [0, 1] determine the routing of a sample through the
tree, conditioned on that sample’s features. The split func-
tion controls whether the splits are deterministic or prob-
abilistic. The prediction is made by the leaf node that is
reached by the sample.

Split nodes. Each split node i ∈ {1, ..., I} computes a
split feature from a sample, and sends that feature to into
a split function. That function is a map fβi : Rp → R
parametrized by βi. For example, oblique splits are a linear
combination of the input as in fβi

(x) = (xT , 1) · βi with
βi ∈ Rp+1. Similarly, an axis-aligned split perpendicular
to axis a is represented by an oblique split whose only non-
zero parameters are at index a and p + 1. We write θβ =
(β1, ...,βI) to denote the collection of all split parameters
in the tree.

Leaf nodes. Each leaf ` ∈ {1, ..., L} stores a categor-
ical distribution over classes k ∈ {1, ...,K} in a vector
π` ∈ [0, 1]K . These vectors are normalized such that the
probability of all classes in a leaf sum to

∑K
k=1(π`)k = 1.

We define θπ = (π1, ...,πL) to include all leaf parameters
in the tree.

Paths. For each leaf node there exists one unique set of
split outcomes, called a path. We define the probability that
a sample x takes the path to leaf ` as

µ`(x; s,θβ) =
∏

r∈R`

s(fβr
(x))

∏

l∈L`

(
1− s(fβl

(x))
)
. (1)

x2

x1

β1

1

2

3

4

A

B C

D

E

(a)

0

0.5

1

A

B

C

D

E

x1

x2

p(y = red | x)

(b)

1

2

A 4

B C

1−
s(
fβ1

(x
))

3

D E

s(f
β
1 (x))

(c)

Figure 1: Probabilistic oblique decision trees. a) A feature space with a binary classification problem tessellated by an
example oblique decision tree. The oblique splits (1-4) partition the feature space into five different leaves (A-E). b) The
predicted p(y = red | x) (eq. 2) of the oblique decision tree when a probabilistic split (eq. 3) is used. c) The corresponding
tree diagram.

Here, R` ⊂ {1, ..., I} denotes the splits on the path which
contain ` in the right subtree. Analogously, L` ⊂ {1, ..., I}
denotes splits which contain ` in the left subtree. In fig-
ure 1c this means that RB = {2} and LB = {1, 4}. Also
note that in the following, we will omit the s dependency
whenever we do not consider a specific function.

The prediction of the entire decision tree is given by
multiplying the path probability with the corresponding leaf
prediction:

p(y|x;θ) =

L∑

`=1

(π`)yµ`(x;θβ). (2)

Here, θ = (θβ,θπ) comprises all parameters in the tree.
This representation of a decision tree allows to choose be-
tween different split features and different split functions,
by varying the functions f and s, respectively.

In standard deterministic decision trees as proposed in
[2], the split function is a step function s(x) = Θ(x) with
Θ(x) = 1 if x > 0 and Θ(x) = 0 otherwise.

3.2. Probabilistic decision tree

We now introduce a defining characteristic of the pro-
posed method. Rather than sending a sample deterministi-
cally down the left or right subtree, depending on its fea-
tures x, we send it left or right with a probability

s(f(x)) = σ(f(x)) =
1

1 + e−f(x)
. (3)

This corresponds to regarding each split in the tree as a
Bernoulli decision with mean σ(f(x)) and as a result equa-
tion 2 is the expected value over the possible outcomes. Fig-
ure 1b shows the prediction from equation 2 in the proba-

bilistic case for a class y = “red” on the classification prob-
lem illustrated in figure 1a.

To train our probabilistic decision trees, we choose as
objective the maximization of the empirical log-likelihood
of the training data:

max
θ

£(θ;Xt,Yt) = max
θ

N∑

n=1

log p(yn|xn;θ). (4)

Importantly, while we propose to use a probabilistic de-
cision tree for training, we use a deterministic decision tree
for prediction. To better match the models used at train and
test time, we introduce a hyperparameter γ, which steers
the steepness of the split function by scaling the split fea-
ture [19]

s(f(x)) = σγ(f(x)) = σ(γf(x)). (5)

Note, for γ →∞ the model resembles a deterministic deci-
sion tree, since σ∞(f(x)) = Θ(f(x)). During training, we
iteratively increase γ, akin a temperature cooling schedule
in deterministic annealing [26].

3.3. Expectation-Maximization

For the optimization of the log-likelihood (equation 4),
we propose a gradient-based, EM-style optimization strat-
egy, which requires f and s to be differentiable with re-
spect to the split parameters βi. The derivation of the EM-
algorithm for this model follows the spirit of [11]. We intro-
duce additional latent random variables zn,`, which indicate
that leaf ` generated the class label of a given data point xn.
Including these latent variables, the optimization objective
(eq. 4) becomes the complete-data log-likelihood (including

latent variables)

£(θ;Xt,Yt,Zt) =

N∑

n=1

L∑

`=1

zn,` log
(
(π`)ynµ`(xn;θβ)

)
.

(6)
E-Step. In the Expectation-Step, the expected value of

the complete-data log-likelihood over the latent variables
given the previous parameters θ′ is computed

Q(θ|θ′) = EZt|Xt,Yt;θ′ [£(θ;Xt,Yt,Zt)]. (7)

For this purpose, it is necessary to compute the probability
that zn,` = 1 for each training sample n:

hn,` := p(zn,` = 1 | xn, yn;θ′) (8)

=
p(yn | zn,` = 1,xn;θ′)p(zn,` = 1 | xn;θ′)

p(yn | xn;θ′)
(9)

=
(π′`)ynµ`(xn;θ′β)

∑L
`′=1(π′`′)ynµ`′(xn;θ′β)

. (10)

Thus, the expectation value of the complete-data log-
likelihood yields

Q(θ|θ′) =
N∑

n=1

L∑

`=1

hn,` log
(
(π`)ynµ`(xn;θβ)

)
. (11)

M-Step. In the Maximization-Step of the EM-
Algorithm, the expectation value computed in the E-Step
(eq. 11) is maximized to find updated parameters

max
θ

Q(θ|θ′). (12)

Due to the latent variables we introduced, it is now possi-
ble to separate the parameter dependencies in the logarithm
into a sum. As a result, the leaf predictions and split pa-
rameters are optimized separately. The optimization of the
leaf predictions including the normalization constraint can
be computed directly as

(π`)k =

∑N
n=1 1(yn = k)hn,`∑N

n=1 hn,`
. (13)

Here, the indicator function 1(yn = k) equals 1 if yn = k
and 0 otherwise.
The optimization of the split parameters in the M-Step is
performed using gradient based optimization. The sepa-
rated objective for the split parameters without the leaf pre-
dictions is

max
θβ

N∑

n=1

L∑

`=1

hn,` logµ`(xn;θβ). (14)

We use the first-order gradient-based stochastic optimiza-
tion Adam [12] for optimization of the split parameters.

In summary, each iteration of the algorithm requires
evaluation of equations 10 and 13, as well as at least one
update of the split parameters based on equation 14. This
iterative algorithm can be applied to a binary decision tree
of any given structure.

3.4. Complex splits and spatial regularization

The proposed optimization procedure only requires the
split features f to be differentiable with respect to the split
parameters. As a result, it is possible to implement more
complex splits than axis-aligned or oblique splits. For ex-
ample, it is possible to use a small Convolutional Neural
Network (CNN) as split feature extractor for f and learn its
parameters (section 4.4).

Furthermore, the optimization objective can also include
regularization constraints on the parameters. This is useful
to avoid overfitting and learn more robust patterns. When
the inputs are from images, spatial regularization also re-
veals more discernible spatial structures in the learned pa-
rameters without sacrificing accuracy (section 4.2). To en-
courage the learning of coherent spatial patterns at each
split, we introduce a spatial regularization term

− λ
I∑

i=1

βTi Mβi (15)

to the maximization objective of the split features (eq. 14)
[5]. The matrix M denotes the Laplacian matrix when in-
terpreting the image as a grid graph. For a single pixel,
corresponding to weight βi, the diagonal element Mii con-
tains the number of neighboring pixels. If pixels i and j are
neighboring pixels, then Mij = Mji = −1. All remain-
ing elements in M are 0. This regularization term penal-
izes spatial finite differences, encouraging similar parame-
ters for neighboring pixels. The hyperparameter λ controls
the regularization strength, with higher λ leads to stronger
regularization.

3.5. Structure learning

The foregoing shows how to fit a decision tree to training
data, given the tree topology (parameter learning). We now
turn to the learning of the tree itself (structure learning). We
recommend, and evaluate in section 4.1, a greedy strategy:
Starting at the root, each split is considered and trained as a
tree stump, consisting of one split and two leaf nodes.

Since there are only two leaves, the log-likelihood objec-
tive (eq. 4) then resembles an approximation of the widely
popular information gain criterion [23, 24] (section 3.6).
The previously found splits, in the more shallow levels of
the tree, deterministically route data to the split currently
being trained. In particular this means that, at first, the root
split is trained on the entire training data. After training of
the first split, both leaves are discarded and replaced by new

splits. According to the root split, the training data is deter-
ministically divided into two subsets, which are now used to
train the corresponding child nodes. This procedure is re-
peated until, some stopping criterion, e.g. maximum depth,
maximum number of leaves or leaf purity, is reached. After
this greedy structure learning, the nodes in the entire result-
ing tree can be finetuned jointly as described in section 3.3,
this time with probabilistic routing of all training data.

3.6. Relation to information gain and leaf entropies

We now show that maximization of the log-likelihood of
the probabilistic decision tree model approximately mini-
mizes the weighted entropies in the leaves. The steeper the
splits become, the better the approximation.

To establish this connection we use hyperparameter γ
to control the steepness of the probabilistic split function
(eq. 5). We introduce the function `(x) that returns the in-
dex of the leaf sample x reaches when the path is evaluated
deterministically

`(x) =
L∑

`=1

` lim
γ→∞

µ`(x;σγ ,θβ). (16)

This simplifies the log-likelihood objective (eq. 4) to

max
θ

N∑

n=1

log(π`(xn))yn (17)

because each sample reaches only one leaf. Let N`,k be
the number of training samples in leaf ` with class k and
N` =

∑K
k=1N`,k denote all training samples in leaf `.

Since training samples with the same class and in the same
leaf contribute the same term, the equations may be rear-
ranged to

max
θ

L∑

`=1

K∑

k=1

N`,k log(π`)k. (18)

With γ → ∞, the optimal leaf predictions are the same as
in a standard, deterministic decision tree, i.e. (π`)k =

N`,k

N`
.

Accordingly, the objective can be rewritten as

max
θ

lim
γ→∞

£(θ;Xt,Yt) = min
θ

L∑

`=1

N`
N
H`. (19)

Here, H` = −∑K
k=1(π`)k log(π`)k denotes the entropy in

leaf `.
In conclusion, we have shown that for γ → ∞, max-

imizing the log-likelihood objective minimizes a weighted
sum of leaf entropies. For the special case of a single split
with two leaves, this is the same as maximizing the informa-
tion gain. Consequently, the log-likelihood objective (eq. 4)
can be regarded as a generalization of the information gain
criterion [23] to an entire tree.

4. Experiments
We conduct experiments on data from very different do-

mains: first, on the multivariate but unstructured datasets
used in [22] (section 4.1). Next, we show that the pro-
posed algorithm can learn meaningful spatial features on
MNIST, FashionMNIST and ISBI, as has previously been
demonstrated in neural networks but not in decision trees
(section 4.2). Then, we demonstrate the same property on
a real-world biological image processing task (section 4.3).
Finally, we deliver proof of principle that a deterministic
decision tree with complex split nodes can be trained end-
to-end, by using a small neural network in each split node
(section 4.4).

4.1. Performance of oblique decision trees

We compare the performance of our algorithm in terms
of accuracy to all results reported in [22]. They only com-
pare single, unpruned trees, since common ensemble meth-
ods such as bagging and boosting as well as pruning can be
applied to all algorithms. In order to provide a fair compar-
ison, we also refrain from pruning, ensembles and regular-
ization.

Datasets. Reference [22] reports results on the follow-
ing four datasets. The multi-class classification datasets
SensIT (combined), Connect4, Protein and MNIST are ob-
tained from the LIBSVM repository [6]. When a separate
test set is not provided, we randomly split the data into a
training set with 80% of the data and use 20% for testing.
Likewise, when no validation set is provided, we randomly
extract 20% of the training set as validation set. In a prepro-
cessing step, we normalize the data to zero mean and unit
variance of the training data.

Compared algorithms. The final model for prediction
is always a deterministic decision tree with either oblique
or axis-aligned splits. The following algorithms were eval-
uated in [22]. Axis-aligned: conventional axis-aligned splits
based on information gain. OC1: oblique splits optimized
with coordinate descent as proposed in [20]. Random: se-
lected the best of randomly generated oblique splits based
on information gain. CO2: greedy oblique tree algorithm
based on structured learning [21]. Non-greedy: non-greedy
oblique decision tree algorithm based on structured learning
[22]. We compare the results of these algorithms with our
proposed algorithms. Here, Greedy denotes a greedy ini-
tialization where each oblique split is computed using the
EM optimization. For each depth, we apply the Finetune
algorithm to the tree obtained from the Greedy algorithm at
that depth.

Hyperparameters and initialization. We keep all hy-
perparameters fixed and conduct a grid search only over
the number of training epochs in {20, 35, 50, 65}, using a
train/validation split. The test data is only used to report the
final performance.

5 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 10 15

0.6

0.7

0.8

0.9

1.0

5 10 15
0.5

0.6

0.7

0.8

0.9

1.0

5 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Finetuned
Greedy
Non-greedy
CO2
Axis-aligned
OC1
Random

5 10 15

0.6

0.7

0.8

0.9

1.0

5 10 15
0.5

0.6

0.7

0.8

0.9

1.0

5 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tree depth Tree depth Tree depth Tree depth

Te
st

ac
cu

ra
cy

Tr
ai

ni
ng

ac
cu

ra
cy

(a) MNIST (b) SensIT (c) Connect4 (d) Protein

Figure 2: Performance of deterministic oblique decision trees. Accuracy of Greedy trained (solid, light red line) and Fine-
tuned oblique decision trees (solid, dark red line) on test and training sets is compared against other algorithms. The maximum
tree depth varies from 2 to 18 with stepsize 2. Dashed lines represent results reported in [22].

For gradient-based split parameter optimization, we use
the Adam optimizer [12] with default parameters (α =
0.001, β1 = 0.9, β2 = 0.999, ε = 10−8) and a batch size
of 1000 with shuffled batches. The split steepness hyperpa-
rameter is set to γ = 1.0 initially and increased by 0.1 after
each epoch (one epoch consists of the split parameter θβ
updates of all training batches as well as the update of the
leaf predictions θπ).
Initial split directions are sampled from the unit sphere and
the categorical leaf predictions are initialized uniformly ran-
dom.

Results. Figure 2 shows the test and training statistical
accuracy of the different decision tree learning algorithms.
The accuracy of a classifier is defined as the ratio of cor-
rectly classified samples in the respective set. It was evalu-
ated for a single tree at various maximum depths. The red
solid lines show the result of our proposed algorithm, the
dashed lines represent results from [22].
Our algorithms achieve higher test accuracy than previous
work, especially in extremely shallow trees. The highest in-
crease in test accuracy is observed on the MNIST data set.
Here, we significantly outperform previous approaches for

oblique decision trees at all depths. In particular, an oblique
decision tree of depth 4 is already sufficient to surpass all
competitors.
Likewise, on Connect4 our approach performs better at all
depths. Notably, a decision tree of depth 2 is sufficient to
exceed previous approaches.
On SensIT and Protein we perform better than or on par
with the Non-greedy approach proposed in [22]. However,
experiments with regularization of leaf features have shown
that with more hyperparameter tuning overfitting may be re-
duced, e.g. on the Protein dataset and thus the results may
be improved. We did not include this here, as we aimed to
provide a fair comparison and show the performance given
very little fine-tuning.
Generally, our algorithm also trains more accurate oblique
decision trees on of the depth complexity on the training
data.

In conclusion, our experiments show that our proposed
algorithm is able to learn more accurate deterministic
oblique decision trees than previous approaches. Further-
more, we refrained from hyperparameter tuning to show
that the approach even works well with default parameters.

MNIST

FashionMNIST

ISBI

(a) Without spatial regularization (b) With spatial regularization

Figure 3: Visualizations of oblique split parameters learned with and without spatial regularization (section 3.4). The pa-
rameters are learned on different datasets, viz. MNIST [15] (top row), FashionMNIST [30] (center row) and ISBI [3] (bottom
row). Parameters trained with spatial regularization show visible structures and patterns, whereas parameters learned without
regularization appear noisy. In both cases, we selected the parameters that show the best visible structures.

4.2. Spatially regularized parameters

We now investigate the effects of spatial regularization
(section 3.4) on the parameters of oblique decision trees
learned with our algorithm. For this purpose, we train
oblique decision trees on the MNIST digit dataset [15],
the FashionMNIST fashion product dataset [30] and the
ISBI image partitioning dataset [3] comprising serial section
Transmission Electron Microscopy images. In figure 3, we
visualized selected parameters of the oblique splits at vari-
ous depths with and without regularization. In both cases,
we selected the parameters that displayed the best visible
structures. For MNIST and FashionMNIST, the parameters
were reshaped to 28× 28 images, such that each parameter
pixel corresponds to the respective pixel in the training im-
ages. To solve the segmentation task on ISBI, we provide a
sliding window of size 31× 31 as features for each pixel in
the center of the window. Moreover, we linearly normalized
the parameters to the full grayscale range.

Results. Regularization penalizes differences in adja-
cent parameters. The parameters without regularization ap-
pear very noisy and it is difficult for the human eye to iden-
tify structures. In contrast, in the experiments with regular-
ization the algorithm learns smoother parameter patterns,
without decreasing the accuracy of the decision trees. The
regularized parameters display structures and recognizable
patterns. The patterns learned on the MNIST show visi-
ble sigmoidal shapes and even recognizable digits. On the
FashionMNIST dataset, the regularized parameters display

the silhouettes of coats, pants and sneakers. Likewise, our
algorithm is able to learn the structures of membranes on
the real-world biological electron microscopy images from
the ISBI dataset.

4.3. Image segmentation

We test the applicability of the proposed decision tree
algorithm for image segmentation on the ISBI challenge
dataset [3]. This image partitioning benchmark comprises
serial section Transmission Electron Microscopy images
and binary annotations of neurons and membranes (fig-
ure 4a).
For every pixel, we provide a sliding window around the
current pixel as input features to the oblique decision tree.
Consequently, the learned parameters at each split node can
be regarded as a spatial kernel. We learn an oblique deci-
sion tree of depth 8 with a maximum of 256 leaves with
our greedy EM algorithm. We use the default parameters as
described in section 4.1 and train each split for 40 epochs.

Results. Figure 4 shows a sample image of the input, the
groundtruth labels, the predicted probability of our oblique
decision tree and the color-coded leaf affiliation. The vi-
sualization of the prediction shows pixels more likely to be
of class “membrane” in darker color. In the color-coded
leaf affiliation, each grayscale value represents a leaf in the
oblique decision tree. Darker pixels have reached a leaf fur-
ther on the left side of the decision tree.
In the prediction most of the membranes are correctly iden-
tified. However, many mitochondria are falsely classified

(a) input (b) ground truth (c) prediction (d) leaves

Figure 4: Visualization of results of oblique decision trees on the ISBI binary segmentation dataset. Column a shows the
input image and column b the corresponding groundtruth labels. Column c illustrates the probability estimate predicted by
the oblique decision tree. Darker means higher probability for class “membrane”. Column d show the leaf affiliation in the
oblique decision tree. The leaves from left to right are equidistantly assigned to grayscale values from black to white.

as membrane. Interestingly, the leaf affiliation is fairly reg-
ular, implying that most adjacent pixels are routed to the
same leaf, in spite of some variation in appearance. The
leaf affiliation could also be provided as additional feature
in order to stack classifiers.

4.4. CNN split features

In a preliminary experiment, we test the effectiveness of
Convolutional Neural Networks as split features on MNIST.
At each split we trained a very simple CNN of the following
architecture: Convolution 5× 5 kernel @ 3 output channels
→Max Pool 2× 2→ ReLU→ Convolution 5× 5 @ 6→
Max Pool 2× 2→ ReLU→ Fully connected layer 96× 50
→ ReLU→ Fully connected layer 50× 1. The final scalar
output is the split feature, which is the input to the split
function.
Again, we train greedily to initialize the tree, however we
split nodes in a best-first manner, based on highest infor-
mation gain. As a result, the trees can be fairly unbalanced
despite impure leaves. We now choose to stop at a max-
imum of 10 leaves, as we aim to increase interpretability
and efficiency by having one expert leaf per class.

Results. In this setting, we achieve a test accuracy
of 0.982 ± 0.003 deterministic evaluation of nodes. This
model provides interesting benefits in interpretability and
efficiency, which are the main advantages of decision trees.
When a sample was misclassified it is straightforward to
find the split node that is responsible for the error. This
offers interpretability as well as the possibility to improve
the overall model. Other methods, such as OneVsOne or
OneVsRest multi-class approaches, provide similar inter-
pretability, however at a much higher cost at test time. This
is due to the fact that in a binary decision tree with K
leaves,i.e. a leaf for each class, it is sufficient to evaluate
O(logK) split nodes. In OneVsOne and OneVsAll it is nec-

essary to evaluateK(K−1)/2 and respectivelyK different
classifiers at test time.

5. Conclusion
We have presented a new approach to train determin-

istic decision trees with gradient-based optimization in an
end-to-end manner. We show that this approach outper-
forms previous algorithms for oblique decision trees. The
approach is not restricted in the complexity of the split fea-
tures and we have provided preliminary evidence of the ef-
fectiveness of more complex split features, such as convolu-
tional neural networks. Moreover, our approach allows im-
posing additional regularization constraints on the learned
split features. We have demonstrated these capabilities by
visualizing spatially regularized parameters on image pro-
cessing datasets. The overall approach provides high flex-
ibility and the potential for accurate models that maintain
interpretability and efficiency due to the conditional data
flow.

References
[1] L. Breiman. Random forests. Machine Learning, 45(1):5–

32, 2001. 2
[2] L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone. Clas-

sification and regression trees. Chapman & Hall/CRC, 1984.
3

[3] A. Cardona, S. Saalfeld, S. Preibisch, B. Schmid, A. Cheng,
J. Pulokas, P. Tomancak, and V. Hartenstein. An in-
tegrated micro- and macroarchitectural analysis of the
drosophila brain by computer-assisted serial section electron
microscopy. PLOS Biology, 8(10):1–17, 10 2010. 7

[4] A. Criminisi and J. Shotton. Decision Forests for Computer
Vision and Medical Image Analysis. Springer, 2013. 2

[5] P. H. C. Eilers and B. D. Marx. Flexible smoothing with B-
splines and penalties. Statistical Science, 11:89–121, 1996.
4

[6] R.-E. Fan and C.-J. Lin. Libsvm data: Classification, regres-
sion and multi-label. http://www.csie.ntu.edu.
tw/˜cjlin/libsvmtools/datasets/, 2011. 5

[7] M. Fernández-Delgado, E. Cernadas, S. Barro, and
D. Amorim. Do we need hundreds of classifiers to solve real
world classification problems? Journal of Machine Learning
Research, 15:3133–3181, 2014. 2

[8] J. Gall and V. Lempitsky. Class-specific hough forests for
object detection. In 2009 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 1022–1029, June 2009.
2

[9] Y. Ioannou, D. Robertson, D. Zikic, P. Kontschieder, J. Shot-
ton, M. Brown, and A. Criminisi. Decision forests,
convolutional networks and the models in-between. In
arXiv:1603.01250, March 2016. 2

[10] M. I. Jordan. A statistical approach to decision tree mod-
eling. In Proceedings of the Seventh Annual Conference on
Computational Learning Theory, COLT ’94, pages 13–20,
New York, NY, USA, 1994. 2

[11] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of ex-
perts and the em algorithm. Neural Comput., 6(2):181–214,
Mar. 1994. 2, 3

[12] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. ICLR, 2015. 4, 6

[13] P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Bulò.
Deep neural decision forests. In ICCV, 2015. 2

[14] P. Kontschieder, P. Kohli, J. Shotton, and A. Criminisi. Geof:
Geodesic forests for learning coupled predictors. In The
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2013. 2

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, November 1998. 7

[16] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-
time keypoint recognition. In 2005 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 2, pages 775–781 vol. 2, June 2005. 2

[17] M. McGill and P. Perona. Deciding how to decide: Dy-
namic routing in artificial neural networks. In D. Precup
and Y. W. Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceed-
ings of Machine Learning Research, pages 2363–2372, Inter-
national Convention Centre, Sydney, Australia, 06–11 Aug
2017. PMLR. 2

[18] B. H. Menze, B. M. Kelm, D. N. Splitthoff, U. Koethe, and
F. A. Hamprecht. On Oblique Random Forests, pages 453–
469. Springer, 2011. 2

[19] A. Montillo, J. Tu, J. Shotton, J. Winn, J. Iglesias,
D. Metaxas, and A. Criminisi. Entanglement and differen-
tiable information gain maximization. In Decision Forests
for Computer Vision and Medical Image Analysis, chap-
ter 19, pages 273–293. Springer, January 2013. 2, 3

[20] K. V. S. Murthy. On Growing Better Decision Trees from
Data. PhD thesis, The Johns Hopkins University, 1996. 5

[21] M. Norouzi, M. D. Collins, D. J. Fleet, and P. Kohli. Co2
forest: Improved random forest by continuous optimization
of oblique splits. arXiv:1506.06155, 2015. 2, 5

[22] M. Norouzi, M. D. Collins, M. Johnson, D. J. Fleet, and
P. Kohli. Efficient non-greedy optimization of decision trees.
In NIPS, December 2015. 2, 5, 6

[23] J. R. Quinlan. Induction of decision trees. In J. W. Shavlik
and T. G. Dietterich, editors, Readings in Machine Learning.
Morgan Kaufmann, 1990. Originally published in Machine
Learning 1:81–106, 1986. 1, 4, 5

[24] J. R. Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA,
1993. 4

[25] D. Richmond, D. Kainmueller, M. Yang, E. Myers, and
C. Rother. Mapping auto-context decision forests to deep
convnets for semantic segmentation. In E. R. H. Richard
C. Wilson and W. A. P. Smith, editors, Proceedings of the
British Machine Vision Conference (BMVC), pages 144.1–
144.12. BMVA Press, September 2016. 2

[26] K. Rose, E. Gurewitz, and G. C. Fox. Statistical mechanics
and phase transitions in clustering. Phys. Rev. Lett., 65:945–
948, Aug 1990. 3

[27] I. K. Sethi. Entropy nets: from decision trees to neural net-
works. Proceedings of the IEEE, 78(10):1605–1613, Oct
1990. 2

[28] A. Suárez and J. F. Lutsko. Globally optimal fuzzy decision
trees for classification and regression. IEEE Trans. Pattern
Anal. Mach. Intell., 21(12):1297–1311, Dec. 1999. 2

[29] J. Welbl. Casting random forests as artificial neural networks
(and profiting from it). In GCPR, 2014. 2

[30] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a
novel image dataset for benchmarking machine learning al-
gorithms. In arXiv:1708.07747, 2017. 7

Supplementary Material to
End-to-end Learning of Deterministic Decision Trees

Thomas Hehn Fred A. Hamprecht
HCI/IWR, Heidelberg University

{thomas.hehn,fred.hamprecht}@iwr.uni-heidelberg.de

1. Alternating optimization
Similarly to the EM-algorithm presented in section 3.3

of the main paper, the alternating strategy aims to optimize
the split parameters and the leaf prediction parameters sepa-
rately. However, instead of computing the exact leaf predic-
tions, we approximate them using a deterministic decision
tree.
Let N`,k be the number of training samples in leaf ` with
class k and N` =

∑K
k=1N`,k denotes the sum of all train-

ing samples in leaf `. The optimal leaf predictions are

(π`)k =
N`,k
N`

. (1)

Analogously to the EM-algorithm in the main paper, we
use Adam [1] to optimize the split parameters. The log-
likelihood objective given the current estimate of the leaf
predictions is:

max
θβ

N∑

n=1

log

(
L∑

`=1

(π`)yµ`(x;σγ ,θβ)

)
. (2)

This algorithm is applicable to optimize an entire tree, as
well as to optimize tree stumps as required for the greedy
structure learning.

1.1. Experiments

We compare this algorithm to the results of our EM al-
gorithm for oblique decision trees reported in section 4.1 of
the main paper. The hyperparameter tuning and the exper-
imental setup are done in the same way as for the EM al-
gorithm. Figure 1 illustrates the results of the experiments.
The results show that both algorithms perform equally well
in terms of accuracy.

2. Visualization of oblique decision trees
Figures 2 and 3 show visualizations of entire oblique

decision trees of depth 4 trained on MNIST [2] and
FashionMNIST [3]. Both trees were trained with the EM

algorithm and spatial regularization to obtain smooth visu-
alizations. Leaf predictions are visualized as bar plots. The
split parameters are visualized as in section 4.2 of the main
paper. Intuitively, the better the input image matches the
parameter image, the more likely it is to go to the right.
Likewise, the better the input images resembles the neg-
ative parameter image, the more likely it is to go the left
child. How many training samples follow a certain path is
indicated by the thickness of the arrows. Thicker arrows
mean more training samples follow the path when the deci-
sion tree is deterministic.

Some split parameters of the decision tree trained on
MNIST (figure 2) reveal interesting structures. At depth 3
(row 4), the fifth split node from the left shows a dark sil-
houette of the number “6”. Accordingly, the left child pre-
dicts class “6”. In the same manner, the parameters of the
sixth split node at depth 3 expose a dark stroke in the center
surrounded by brighter pixels. This is used to distinguish
class “1”, which is predicted by the left child.
The decision tree in figure 3 was trained on the
FashionMNIST dataset [3], a dataset comprising 28 × 28
grayscale images of fashion products. These fashion prod-
ucts can be discovered in the learned split parameters.
The split parameters of the first split at depth 3 (row 4)
show bright trousers and its right child predicts the class
“trousers”. The same holds for the second split at depth
3 showing a bright silhouette of a dress and its right child
which predicts “dress”. The parameters of the third split at
depth 3 reveal some kind of upper body clothes, but it is
difficult to determine the kind. Yet, these parameters sepa-
rate samples of class “pullover” and “shirt” (left child) from
class “coat” (right child). Similarly, the fifth split node also
reveals only a slight silhouette of a shoe. Still, its right
child is certain predicting “sneaker”, whereas the left child
is rather indecisively predicting “sandals”, “sneaker” and
“ankle boots”.

The decision tree illustrations reveal the internal deci-
sions being made to reach a final prediction and provide a
useful tool to interpret our model.

1

ar
X

iv
:1

71
2.

02
74

3v
1

 [
st

at
.M

L
]

 7
 D

ec
 2

01
7

5 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 10 15

0.6

0.7

0.8

0.9

1.0

5 10 15
0.5

0.6

0.7

0.8

0.9

1.0

5 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Finetuned (EM)
Finetuned (alt)
Greedy (EM)
Greedy (alt)

5 10 15

0.6

0.7

0.8

0.9

1.0

5 10 15
0.5

0.6

0.7

0.8

0.9

1.0

5 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tree depth Tree depth Tree depth Tree depth

Te
st

ac
cu

ra
cy

Tr
ai

ni
ng

ac
cu

ra
cy

(a) MNIST (b) SensIT (c) Connect4 (d) Protein

Figure 1: Performance of alternating optimization (alt) compared to the EM optimization (EM) presented in the main paper.
Accuracy of oblique decision trees at different maximum depth on test and training sets is compared. Maximum tree depth
is varied from 2 to 18 with step size 2. At each depth, both algorithms (alt and EM) are used to learn respectively an initial
greedy tree and finetune the initial tree.

References
[1] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. ICLR, 2015. 1
[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, November 1998. 1, 3

[3] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms.
In arXiv:1708.07747, 2017. 1, 4

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

Fi
gu

re
2:

V
is

ua
liz

at
io

n
of

an
ob

liq
ue

de
ci

si
on

tr
ee

le
ar

ne
d

on
M

N
IS

T
[2

]
w

ith
sp

at
ia

lr
eg

ul
ar

iz
at

io
n.

T
he

sp
lit

pa
ra

m
et

er
s

ar
e

vi
su

al
iz

ed
as

in
se

ct
io

n
4.

2
of

th
e

m
ai

n
pa

pe
r.

A
s

a
ru

le
of

th
um

b:
T

he
be

tte
rt

he
in

pu
ti

m
ag

e
m

at
ch

es
th

e
pa

ra
m

et
er

im
ag

e,
th

e
m

or
e

lik
el

y
th

e
sa

m
pl

e
w

ill
go

to
th

e
ri

gh
tc

hi
ld

.I
ft

he
in

pu
ti

m
ag

e
be

tte
r

re
se

m
bl

es
th

e
ne

ga
tiv

e
pa

ra
m

et
er

im
ag

e,
th

e
sa

m
pl

e
w

ill
go

to
th

e
le

ft
.

T
he

th
ic

kn
es

s
of

an
ar

ro
w

in
di

ca
te

s
th

e
nu

m
be

r
of

tr
ai

ni
ng

sa
m

pl
es

fo
llo

w
in

g
th

e
pa

th
,w

he
n

th
e

de
ci

si
on

tr
ee

is
ev

al
ua

te
d

de
te

rm
in

is
tic

al
ly

.
L

ea
f

pr
ed

ic
tio

ns
ar

e
vi

su
al

iz
ed

as
ba

r
pl

ot
s,

w
he

re
th

e
x-

ax
is

de
no

te
s

cl
as

se
s

0
to

9
an

d
th

e
y-

ax
is

co
rr

es
po

nd
s

to
th

e
pr

ob
ab

ili
ty

of
ea

ch
cl

as
s.

A
xi

s
la

be
ls

w
er

e
om

itt
ed

du
e

to
sp

ac
e

re
st

ri
ct

io
ns

.

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

0
2

4
6

8
01

Fi
gu

re
3:

V
is

ua
liz

at
io

n
of

an
ob

liq
ue

de
ci

si
on

tr
ee

le
ar

ne
d

on
Fa

sh
io

nM
N

IS
T

[3
]w

ith
sp

at
ia

lr
eg

ul
ar

iz
at

io
n.

T
he

sp
lit

pa
ra

m
et

er
s

ar
e

vi
su

al
iz

ed
as

in
se

ct
io

n
4.

2
of

th
e

m
ai

n
pa

pe
r.

A
s

a
ru

le
of

th
um

b:
T

he
be

tte
rt

he
in

pu
ti

m
ag

e
m

at
ch

es
th

e
pa

ra
m

et
er

im
ag

e,
th

e
m

or
e

lik
el

y
th

e
sa

m
pl

e
w

ill
go

to
th

e
ri

gh
tc

hi
ld

.I
ft

he
in

pu
t

im
ag

e
be

tte
rr

es
em

bl
es

th
e

ne
ga

tiv
e

pa
ra

m
et

er
im

ag
e,

th
e

sa
m

pl
e

w
ill

go
to

th
e

le
ft

.T
he

th
ic

kn
es

s
of

an
ar

ro
w

in
di

ca
te

s
th

e
nu

m
be

ro
ft

ra
in

in
g

sa
m

pl
es

fo
llo

w
in

g
th

e
pa

th
w

he
n

th
e

de
ci

si
on

tr
ee

is
ev

al
ua

te
d

de
te

rm
in

is
tic

al
ly

.L
ea

fp
re

di
ct

io
ns

ar
e

vi
su

al
iz

ed
as

ba
rp

lo
ts

.T
he

x-
ax

is
de

no
te

s
cl

as
se

s
(0

:T
-s

hi
rt

/to
p,

1:
Tr

ou
se

r,
2:

Pu
llo

ve
r,

3:
D

re
ss

,4
:C

oa
t,

5:
Sa

nd
al

,6
:S

hi
rt

,7
:S

ne
ak

er
,8

:B
ag

,9
:A

nk
le

bo
ot

)a
nd

th
e

y-
ax

is
co

rr
es

po
nd

s
to

th
e

pr
ob

ab
ili

ty
of

ea
ch

cl
as

s.
A

xi
s

la
be

ls
w

er
e

om
itt

ed
du

e
to

sp
ac

e
re

st
ri

ct
io

ns
.

