
Universität Heidelberg

Institut für Informatik

Sommersemester 2019

Seminar Arti�cial Intelligence for Games

Dozent: Prof. Dr. Ullrich Köthe

Seminararbeit

Evolutionary Algorithms for Controllers in

Games

Name: Oliver Mautschke

Matrikelnummer: 3538495

Studiengang: Angewandte Informatik (Master) (3. Fachsemester)

Email: olivermautschke@gmail.com
Datum der Abgabe: July 4, 2019

mailto:olivermautschke@gmail.com

Hiermit versichere ich, Oliver Mautschke, dass ich die Seminararbeit mit dem Titel

Evolutionary Algorithms for Controllers in Games im Seminar Arti�cial
Intelligence for Games im Sommersemester 2019 bei Prof. Dr. Ullrich Köthe

selbstständig und nur mit den in der Arbeit angegebenen Hilfsmitteln verfasst habe. Zitate

sowie der Gebrauch fremder Quellen, Abbildungen, Texte und Hilfsmittel habe ich nach den

Regeln guter wissenschaftlicher Praxis eindeutig als solche gekennzeichnet.

Mir ist bewusst, dass ich fremde Texte und Textpassagen nicht als meine eigenen ausgeben

darf und dass ein Verstoß gegen diese Grundregel des wissenschaftlichen Arbeitens als

Täuschungs- und Betrugsversuch gilt, der entsprechende Konsequenzen nach sich zieht.

Diese bestehen in der Bewertung der Prüfungsleistung mit “nicht ausreichend” (5,0) sowie

ggf. weiteren Maßnahmen.

Außerdem bestätige ich, dass diese Arbeit in gleicher oder ähnlicher Form noch bei keiner

anderen Prüfung vorgelegt wurde.

Heidelberg, den 4. Juli 2019

Abstract

This paper deals with the usage of evolutionary algorithms, especially genetic algorithms in

games. The concept of genetic algorithms and evolution will be described and the approaches

NEAT and EBT will be presented. Then, the paper shows how this algorithm can be used

in the games Super Mario. It will be discussed, what is necessary for a good setup using a

genetic algorithm and how to evaluate results from a GA. Three di�erent approaches will

be shown including EBT, NEAT which is an neuroevolutionary algorithm and an interactive

approach giving the user the possibility to lead the evolution.

Contents

1 Introduction 1

2 Evolutionary Algorithms 1
2.1 Evolution . 1

2.2 Di�erent Approaches . 2

2.3 Genetic Algorithms . 3

2.4 Neuroevolution . 5

2.5 Evolving Behavior Trees . 7

3 Super Mario 7
3.1 In�nity Super Mario . 8

3.2 NEAT & EBT . 8

3.3 Interactive Evolution . 9

4 Discussion 10

iii

Oliver Mautschke: Evolutionary Algorithms for Controllers in Games

1 Introduction

This seminar paper deals with the usage of evolutionary algorithms, especially genetic

algorithms to develop and optimize controllers for games. In general it can be said that there

are two di�erent types of AIs in games. Those which do strategic decisions like for chess or

Go and those which play action games where quick calculations and timing is important. For

strategic AIs it can be at least estimated with an heuristic how good a decision was. With

this information, the AI can be trained. For action games like Super Mario, it is a hard task to

rate an action because the only real feedback from the game if the action was good or bad

would be winning or dying. Genetic algorithms which are oriented on biological evolution

have the possibility to train a controller only with its overall performance. Therefore it can be

applied to action games like Super Mario which will be done in chapter 3. In the next chapter,

evolutionary algorithms will be described and genetic algorithms will be explained in detail.

2 Evolutionary Algorithms

Within the �eld of Evolutionary Algorithms there are di�erent concepts all based on the idea

of biological evolutionary concepts. In this chapter, these di�erent approaches will be shown

shortly. This paper focuses on a speci�c type of Evolutionary Algorithms called Genetic

Algorithms which will then be explained as well as the concrete approaches Neuroevolution

and Evolving Behavior Trees.

But �rst a short introduction to evolution itself will be given.

2.1 Evolution

This will just be a very short introduction to evolutionary concepts in general.

Most people think about the cite "Survival of the �ttest" when hearing about evolution. From

this point they develop the understanding that evolution is somehow the process of optimizing

a being. The human for example developed the thumb, because its easier to use tools with it,

and so the human got �tter and survived. This is not completely wrong but leads into the

misunderstanding that evolution develops new features because they help the being to survive.

This idea is not correct. New features develop randomly via mutation and recombination.

The new feature will then have an in�uence on the probability of the being to survive and

being able to reproduce. So we do not see people with three arms, because they are not useful

1

Oliver Mautschke: Evolutionary Algorithms for Controllers in Games

but because the probability of reproduction did not raise for the people with this kind of

mutations in the past.

2.2 Di�erent Approaches

Transferring this concept of evolution to computer science, it could be seen as a leaded random

search. With the concept of recombination and/or mutation a solution for a problem could be

optimized.

There have been 4 di�erent approaches developed so far using this concepts for optimization

[Nis98]. This paper will focus on Genetic Algorithms but a short introduction to all of the 4

concepts will be given.

Genetic Algorithms are the most popular category. They will be described way more

detailed later in the chapter. The idea behind GAs is to use the main operators selection,

recombination and mutation on genetic encoded solutions for a given problem [Nis98]. For

the selection a �tness value has to be calculated in order to rate a solution [Nis98]. If a solution

can be encoded in a proper way and a �tness value can be calculated, with this concept no

more domain-speci�c knowledge is needed to develop a solution. The operators will create a

working solution by repeating over many generations.

Evolution Strategies were developed to optimize real number vectors for engineering

[BS02]. The ES is completely phenotype oriented which gives some optimization opportunities

in setting parameters for the numbers for the evolutionary operators [BS02]. The selection is

done by choosing the best performing individuals deterministic out of the population [BS02].

The crossover can be done by point-crossover which will be described later for GAs or by

interpolating between the parents [BS02]. The mutation works with random deltas in a

de�ned distribution [BS02].

Genetic Programming uses the concepts of evolution to evolve computer programs

[PBM08]. The programs are generated randomly out of a pool of primitives [PBM08]. Then a

genetic algorithm is applied [PBM08]. The �tness of a program is calculated by executing it

and evaluating its performance with a �tness function [PBM08]. The selection, crossover and

mutation are applied to optimize the population [PBM08].

2

Oliver Mautschke: Evolutionary Algorithms for Controllers in Games

Evolutionary Programming was �rst an approach for arti�cial intelligence [XYG99]. It

then was applied to numerical optimization problems [XYG99]. In di�erence to the other

approaches, EP is only using mutation and selection [XYG99].

2.3 Genetic Algorithms

This paper will focus on GAs. In the following the di�erent operators will be described and

the basic algorithm shown on a very simple example.

As can be seen in �gure 1 the optimization process of an GA is a loop. One loop is called

Figure 1: The concept of an genetic algorithm

a generation [Nis98]. The algorithm starts with a population consisting out of randomly

generated individuals [Nis98]. What is important here is that an individual has two di�erent

types of encoding. First the genotype is the genetic encoded information [Nis98]. Second

the phenotype is the physical expression of the genetic information [Nis98]. In the case of

animals the DNA is the genotype of an individual. The phenotype is the animal itself. In

nature there is sometimes the case that a speci�c part of the genome needs a trigger in order

to express into a physical appearing.

One generation can be considered as �nished, when the �tness of all individuals is cal-

culated. For the �rst generation, after randomly generating individuals, the �tness value

hast to be calculated [Nis98]. The �tness function will be optimized by the whole algorithm

3

Oliver Mautschke: Evolutionary Algorithms for Controllers in Games

[Nis98]. The �tness value describes the performance of an individual for a given task [Nis98].

It could be for example the traveled distance of an evolutionary constructed car. In this case

the �tness function would consist out of the simulation for this car. The result would be the

distance. As an example for this paper, binary Numbers could be seen as genetic encoded

individuals. The �tness value could be the decimal number. The optimization would than be

to maximise this number. The �tness function would calculate the number to every binary

encoded number. The goal of course is to ensure that every single bit is set to 1. Lets con-

sider 4 individuals in this scenario (A=10001100, B=01101100, C=10011011, D=00011000). The

�tness values would be �t(A)=140, �t(B)=108, �t(C)=155 and �t(D)=24. Because the encoding

of binary numbers is well known, it can be seen, that B should have a higher �tness than

A, because it has more bits set to 1. But in a scenario, where is no knowledge about the

impact of a gen in a genome, the overall performance is the only way to evaluate an individual.

The next step is to select parents out of the population. If all parents will be transferred

to the next population and 2 parents generating 2 children the algorithm has to choose 2

parents to have again 4 individuals in the population. There are di�erent approaches to

choose parents from a population. Two of the most popular ones are ranking and tournament

selection [Nis98]. In ranking, all individuals will be ranked based on their �tness [Nis98]. The

individuals with higher �tness values have a big er chance to be chosen but also the ones with

lower values can be chosen by a little chance [Nis98]. This ensures, that the algorithm is not

converging too fast. Also as seen in the example with the binary encoded numbers, the �tness

value does not always represent the value of the genetic code. Tournament Selection tries to

simulate the basic concept of parent selection in nature [Nis98]. A sub group of individuals

will be chosen [Nis98]. Then the individual with the highest �tness value will be a parent

for the next generation [Nis98]. This somehow simulates the competition in tiny groups in

nature [Nis98]. Lets consider a selection algorithm chosed B and C to be the parents for the

next generation.

The next step is the crossover. Here the genetic information of the parents will be com-

bined. This can happen with di�erent approaches. One of the standard methods would be the

1-point-crossover [Nis98]. This methods splits the genome of both parents in two parts and

the exchanges them [Nis98]. In this example B would be split into 0110 and 1100, C into 1001
and 1011. The children would then be C1=01101001 and C2=10011100. With the two parents,

the new population would be (B, C, C1, C2).

4

Oliver Mautschke: Evolutionary Algorithms for Controllers in Games

The last step is Mutation. This adds some randomness to the algorithm. In nature, copy errors

in the DNA as well as radiation can cause changes in the genetic code. In a genetic algorithm,

this is done by manipulating the genome after the crossover. This could e done by �ipping

bits or adding a randomly generated delta to a value in the genome [Nis98]. Most important

is the mutation rate [Nis98]. It describes how likely a mutation is [Nis98]. Lets consider, that

in the example, in C2 the second bit was �ipped and in B the �fth. This would lead to the

following population (01100100, 10011011, 01101001, 11011100).

With this generation the next loop will start. As can be seen, the maximal �tness value

increased to 220 for C2. But the idea is, that the whole population increases its �tness value

on average. This causes better recombination results in the future.

One method to ensure, that the maximal �tness value will not decrease is by putting the best

individual in the next population, skipping crossover and mutation [WO13]. This is called

elitism [WO13].

The approach of genetic algorithms can be seen as a basis for di�erent algorithms, which are

more precise towards the encoding of the genome or the crossover method. In the following

two approaches will be shown which take GAs as a basis.

2.4 Neuroevolution

The idea of Neuroevolution is to take a neural network and optimize its topology and weights

trough a GA [SM02]. The simplest variant would be to take a �xed neural network and take

every weight as a gen. This is possible but there are more advanced and complex variants.

One of them is called NeuroEvolution of Augmented Topologies (NEAT) [SM02]. The idea is

to start with a simple perceptron and evolve a structure step by step as well as optimizing

the weights [SM02]. This paper will just give an quick introduction. To understand NEAT its

important to understand the genetic encoding of the neural networks as well as the crossover.

In �gure 2 the crossover is shown but also the encoding of the two parents. A neural network

is stored as an array containing the information of a connection [SM02]. Additionally there is

an enable �ag making it possible to switch a connection o� or on by mutation [SM02]. Very

important for the crossover is also the innovation number seen on top [SM02]. This number

is set when the connection appears the �rst time [SM02]. It makes it possible, to match two

connections while doing the crossover [SM02].

5

Oliver Mautschke: Evolutionary Algorithms for Controllers in Games

Figure 2: The concept of crossover in NEAT [SM02]

The crossover is done by mapping all connections considering the innovation number [SM02].

The connections of the �tter parent that have no matching partner will be added to the

o�spring [SM02]. NEAT implements a method called Niching [SM02]. This method divides

the population in sub groups considering the di�erence of their genome [SM02]. This has

two e�ects. First, when doing the crossover most of the connections will have a matching

partner [SM02]. This ensure that by doing the crossover semantic meaningful information

will be mixed. Connecting two complete di�erent neural networks will most likely result

in a bad performing o�spring. Second, An individual with a complete new node, will have

less competition cause it forms a new species [SM02]. This ensures, that a new feature in

evolution will not be erased in the next generation because the weights are most likely not

optimized yet [SM02]. In future this new node could cause a better performance.

6

Oliver Mautschke: Evolutionary Algorithms for Controllers in Games

2.5 Evolving Behavior Trees

Figure 3: Example for a Behavior Tree [FK15]

Evolving Behavior Trees (EBTs) are the last GA based approach for this paper. An Behavior

Tree can be seen in �gure 3 for Super Mario. The leafs are actions and the branching nodes

are statements which can be true or false [FK15]. For Evolving Behavior Trees a GA is used

to optimize this trees [FK15]. This approach works very simple. Because the Behavior Tree

is somehow a large logic statement it can be stored via a context free gramatic in an array

[FK15]. This is the genotype of an EBT. The crossover is done by swapping sub trees between

the parents [FK15]. Mutation is done by randomly changing nodes or leaves or adding them

to the tree [FK15]. The application of an EBT to Super Mario will be one of the topics in the

next chapter.

3 Super Mario

Super Mario is a jump and run game developed by Nintendo. The player controls a guy called

Mario and helps him to survive a 2D Level with enemies [SOR16]. Because this game is an

real time game and has limited input options, it �ts perfectly to GAs.

7

Oliver Mautschke: Evolutionary Algorithms for Controllers in Games

3.1 In�nity Super Mario

All following algorithms are based on the In�nity Super Mario Game. This version of Super

Mario was originally created by Markus Person and modi�ed by Julian Togelius and Sergey

Karakovskiy for the Mario AI competition [FK15]. The terrain is generated randomly and

there are power ups and coins to collect like in the original Super Mario [SOR16]. Also

enemies are placed randomly in the levels [SOR16]. Mario can be in three diferent states:

small, big and big with the ability to shoot �reballs [SOR16]. With �reballs, all enemies can

be killed [SOR16]. Mario is able to run in both directions, sprint, jump, crounch and shoot

�reballs if he is in the right state [SOR16].

3.2 NEAT & EBT

Figure 4: The input grid for EBT & NEAT [FK15]

The �rst application compares EBTs and NEAT to train a controller for In�nite Super Mario

in the Mario AI Championship con�guration [FK15]. The population consists out of 100

individuals trained over 1000 generations [FK15]. Each controller was tested on 25 levels

which had 4096 steps each [FK15]. The maximal �tness value during training was 25 * 4096

[FK15]. For both EBT and NEAT they tested 3 di�erent input setups using a 3x3, 5x5 and

7x7 input grid [FK15]. Additionally, the algorithm got the onGround and canJump state as

8

Oliver Mautschke: Evolutionary Algorithms for Controllers in Games

an input [FK15]. In �gure 4 the setup with a 7x7 grid is shown. The grid stores information

about the environment at its place. It can be block, enemy or empty [FK15].

The approaches were compared on the di�erent setups. The measurements for the com-

parison were the maximum �tness reached in the 1000th generation, the rise time, which

means the generation, where the mark of 75% of the maximum �tness was reached, as well as

the time needed for every generation to evolve. [FK15].

The overall result was that the EBT approach was much faster in training and was able to

handle with smaller generation numbers [FK15]. The NEAT approach needed more time but

produced a slightly better performing best individual [FK15].

3.3 Interactive Evolution

The second application this paper will cover used an exotic approach. NEAT was used to

train a controller for Super Mario but they replaced the �tness function with an interactive

rating by the user [SOR16]. The user is watching di�erent behaviors of Super Mario and

decides how good they are [SOR16]. The GA uses this algorithm for its selection [SOR16]. As

Figure 5: The input for the neural network [SOR16]

can be seen in �gure 5 the input to the neural network is a 3x3 grid around Mario. Its values

9

Oliver Mautschke: Evolutionary Algorithms for Controllers in Games

are between 1.0 and -1.0 were the di�erent values describe di�erent states of the grid entry

[SOR16]. Additionally, the angle as well as the distance to the next 2 enemies are provided

as input [SOR16]. There are also two state variables canJum and onGround like in the �rsxt

approach [SOR16]. They can be true or false [SOR16]. The output of the network are the keys

one can press in the original Super Mario: up, down, left right jump, �re [SOR16]. The button

will be activated with a threshold of 0.5 [SOR16]. For concurring actions like right and left, if

both are above the threshold the one with the high activation will be chosen [SOR16].

After each generation has run, the user will be shown 9 Gifs recorded from the playing

of the controllers [SOR16]. The user will then be able to compare them and choose its

favourite [SOR16]. Based on this decision, the GA will continue.

The interactive method (IEC) was compared to an �tness function based approach [SOR16].

They both optimized the controller signi�cantly, but the IEC approach performed slightly

better [SOR16]. Also the users tried to give Mario a speci�c behavior like killing all enemies

or collect all coins [SOR16].

4 Discussion

Evolutionary algorithms are an interesting topic which allows approaches that would not be

possible with classical optimization. Their di�erent variants are using the same principles

that made life on earth and eventually other planet make possible. Genetic algorithms can

always be used if a well behaving solution can be rated as such. There is a saying, that an

genetic algorithm is always the second best option to take. Genetic algorithms need a lot of

computing power, because they lead a random search by rewarding good paths and punish

bad ones. If there is no training data for an machine learning algorithm to calculate a loss and

optimize the calculations, a genetic algorithm shows its strength. If it is possible to optimize

a solution mathematically genetic algorithms should not be used.

10

References

References

[BS02] Hans-Georg Beyer and Hans-Paul Schwefel. “Evolution strategies - A comprehen-

sive introduction.” In: Natural Computing 1.1 (2002), pp. 3–52. issn: 15677818. doi:

10.1023/A:1015059928466.

[FK15] Ross Foley and Karl Kuhn. A Comparison of Genetic Algorithms using Super Mario
Bros. Ed. by Sonia Chernova. 2015.

[Nis98] Volker Nissen. “Einige Grundlagen Evolutionärer Algorithmen.” In: 1998, pp. 55–78.

doi: 10.1007/978-3-322-86843-5{\textunderscore}3.

[PBM08] Riccardo Poli, William B. Langdon, and Nicholas Mcphee. A Field Guide to Genetic
Programming. 2008. isbn: 978-1-4092-0073-4.

[SM02] Kenneth O. Stanley and Risto Miikkulainen. “Evolving Neural Networks through

Augmenting Topologies.” In: Evolutionary Computation 10.2 (2002), pp. 99–127.

doi: 10.1162/106365602320169811.

[SOR16] P. D. SØrensen, J. M. Olsen, and S. Risi. “Breeding a diversity of Super Mario be-

haviors through interactive evolution.” In: 2016 IEEE Conference on Computational
Intelligence and Games (CIG). 2016, pp. 1–7. doi: 10.1109/CIG.2016.7860436.

[WO13] Tanapuch Wanwarang and Machigar Ongtang. “Elitism Enhancements for Genetic

Algorithm based Network Intrusion Detection System.” In: Journal of Convergence
Information Technology (2013).

[XYG99] Xin Yao, Yong Liu, and Guangming Lin. “Evolutionary programming made faster.”

In: IEEE Transactions on Evolutionary Computation 3.2 (1999), pp. 82–102. issn:

1089-778X. doi: 10.1109/4235.771163.

11

https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1007/978-3-322-86843-5{\textunderscore }3
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1109/CIG.2016.7860436
https://doi.org/10.1109/4235.771163

	Introduction
	Evolutionary Algorithms
	Evolution
	Different Approaches
	Genetic Algorithms
	Neuroevolution
	Evolving Behavior Trees

	Super Mario
	Infinity Super Mario
	NEAT & EBT
	Interactive Evolution

	Discussion

