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Overview

● Introduction

● Model Based Learning

● Model free Learning

– Monte Carlo

– Temporal Diference

● Function Approximation



 

Motivation

● Training without a supervisor, only with reward

● Feedback not always instantly received

● Acting in environments, where actions have an 

impact on subsequent data

 → Non i.i.d. data
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Defnitions
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● Action 

● State 

● Model

● MDP

● Policy π

● Value Function v

● Action Value Function q

● predicts environment by

– predicting next state

– predicting next Reward

● optional



 

Defnitions
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● Action 

● State 

● Model

● MDP

● Policy π

● Value Function V

● Action Value Function q

● Markov Decision Process is a formal 

environment representation

● tuple

● discount  



 

Defnitions

● Reward        R
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● Action 

● State 

● Model

● MDP

● Policy π

● Value Function V

● Action Value Function q

● defnes agents behaviour

● maps from states to actions

– Deterministically

– Stochastically 
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Defnitions

● Reward        R
t
 , (G
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● Action 

● State 

● Model

● MDP

● Policy π

● Value Function v

● Action Value Function q

● the action-value-function  is the 

expected return starting from state s 

taking action a and following policy π
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Interaction with Environment

Tasks

● Prediction

– Evaluating given policy 

● Control

– Finding best policy
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Characteristics

● Value based

● Policy based

● Model based

● Model free

● Rewards:   -1/step

● States:        location
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Bellman Equation

● solving the equation

● matrix notation

● analogous for q
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Optimal Functions

● Optimal value function

● Optimal value action 

function

● Optimal policy

Theorem

● There exists an optimal 

policy

● The opt. Policy always 

archieves the optimal 

state-(action-)functions
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● evaluate value 

functions iteratively
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Value Iteration

● like one-step policy 

iteration without policy

● pseudo policy is to act 

greedily
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Monte Carlo Policy Evaluation

● is model free

● Learning from experience

● Every time-step t state s is 

visited in an episode, increment 

counter N(s)  N(s) +1←

● Increment total return 

S(s)  S(s) + G←
t

● Update V(s) = S(s) / N(s)

● Update after each episode:

for each state s
t 
with return G

t
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Temporal Diference TD(0)

● Is model free

● Learns from incomplete episodes

● Update values v(s
t
) towards estimated return

● With TD target

● And TD error 
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MC vs. TD

● TD can learn immediately before knowing the 

data  can learn on incomplete sequences→

● MC must wait until sequence is terminated

● Both converges to v*, but diferently

● TD is usually more efcient than MC
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AB Example

● Two states A,B; no discounting

 8 episodes of experience

● A , 0, B, 0

B, 1

B, 1

B, 1

B, 1

B, 1

B, 1

B, 0

● What is v(A), v(B) ?
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n Step Temporal Diference

● No restriction to one-step 

look ahead

● Arbitrary averaging 

possible

● TD(λ) takes geometric 

average over all steps
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Model-free Policy Iteration

● Problem:

policy iteration over v(s) requires a model

● Solution:

use the action-value function q(s, a) instead 
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Exploration vs Exploitation

Exploitation

exploits what is already 

known to maximize reward

● agent needs to fnd the 

optimal policy

● agent has to maximize his 

return

Exploration

fnds more information about 

the environment

 → has to explore his 

possibilities

 → should not give up on to 

much known rewards 



 

ε-Greedy Exploration

● Chose a random action with probability ε

● with m actions available
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MC and TD control

● same as before, but with action-value function q

● Monte Carlo:

 →

● TD(0)  SARSA(0):→

 →



 

Typical Improvement (SARSA)

● seemingly no improvement at beginning
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Problem with bigger Tasks

● Until now: small tasks with table lookup methods

● What is about bigger tasks with more states?

– Go: 10170 states

– Flying a helicopter: continuous state space

● Solution:

 → approximate the value functions instead of 

storing them
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Value Function Approximation

● Represent state by feature vector

● Represent value function by 

linear combination of features

● Minimize mean squared error 

between true value and 

prediction by gradient descent

● Update weights with stochastic 

gradient descent

● MSE

● Gradient of MSE w.r.t. w

●  Gradient update Δw
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Action-Value Function Approx.

● Represent state by feature vector

● Represent value function by linear combination of features

● Minimize mean squared error between true value and prediction 

by gradient descent

● Update weights with stochastic gradient descent



 

Updates for MC, TD(0), TD(λ)
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Updates for MC, TD(0), TD(λ)

Substitute the target with the corresponding returns

● MC 

● TD(0)

● TD(λ)



 

Thank you for your attention



 

Sources

● David Silver, UCL Course on RL

http://www0.cs.ucl.ac.uk/staf/d.silver/web/Teach

ing.html

Lectures 1 to 6
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