Applications of Reinforcement Learning

Ist künstliche Intelligenz gefährlich?

Table of contents

- Playing Atari with Deep Reinforcement Learning
- Playing Super Mario World
- Stanford University Autonomous Helicopter
- AlphaGo

Playing Atari with Deep Reinforcement Learning

Motivation

- most successful RL applications
 - handcrafted features
 - linear value function or policy representation
- ➔ performance relies on quality of features
- advances in deep learning
 - high-level features from raw sensory data

→ Deep Reinforcement Learning

Goal

- play Atari with only raw pixels as input
- reward: game score
 - \circ can be delayed
- connect RL algorithm to deep CNN
 - directly working on RGB images
 - o downsampled
 - grayscale

Experience replay and preprocessing

- replay memory
 - 1 million most recent frames
- one experience
 - $\circ \quad (\phi_j, a_j, r_j, \phi_{j+1})$
- preprocessing function $\phi(s)$
 - stacks history of 4 images
 - crops 84x84 region of image
- initialise $s_1 = \{x_1\}$ and $\phi_1 = \phi(s_1)$

Network Architecture

Experience generation

- every k-th frame
 - with probability $\boldsymbol{\varepsilon}$ select random action a_{t}
 - ε = 1
 - anneals to 0.1
 - \circ otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$
 - \circ execute a_t, observe reward r_t and image x_{t+1}
 - set $s_{t+1} = s_t, a_t, x_{t+1}$
 - preprocess $\phi_{t+1} = \phi(s_{t+1})$
 - \circ store transition $(\phi_j, a_j, r_j, \phi_{j+1})$ in replay memory

Deep Q-learning

• sample random experience $(\phi_j, a_j, r_j, \phi_{j+1})$

• set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$

• perform gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$

Super Mario World

Goal

- first level of Super Mario World
- deep Q-learning with replay memory and spatial transformer
- emulator: Isnes (using LUA API)
- neural net framework: Torch
- training on random parts of the level

Inputs and Outputs

- inputs:
 - last 4 actions as two-hot-vectors (A/B/X/Y and an arrow button)
 - last 4 screenshots, downscaled to 32x32 (grayscale, slightly cropped)
 - current screenshot, 64x64 (grayscale, slightly cropped)
- state captured every 5th frame → 12 times per second
- replay memory size: 250.000 entries
- output:
 - Q-Values for every action in current state (8-dimensional vector)
 - choosing highest button and arrow value

Rewards

- +0.5 moving **right**
- +1.0 moving **fast right** (≥8 pixels)
- -1.0 moving left
- -1.5 moving **fast left** (≥8 pixels)
- +2.0 during level-finished-animation
- -3.0 during **death animation**

• Discount for future rewards: $\gamma = 0.9$

Policy

- ε-greedy policy
 - ο start: ε = 0.8
 - decreases to 0.1 over 400.000 actions

- random action: coin flip
 - randomize one out of two actions
 - randomize both actions

Demonstration

Source: https://youtu.be/L4KBBAwF_bE

Stanford University Autonomous Helicopter

Motivation

- challenging control problem
 complex dynamics model
- exploration can cause crashes

 expensive

→ Apprenticeship learning

What is needed to fly autonomous?

- trajectory
 - desired path for the helicopter to follow
 - hand-coded
- dynamics model
 - learned from flying data
 - input: current state and controls
 - output: prediction where helicopter will be
- controller
 - feeds controls to fly trajectory
 - policy

Overview

Algorithm

- 1. start with an example flight
- 2. compute a **dynamics model** and **reward function** based on the target trajectory and sample flight
- 3. find a **controller** (policy) that maximizes this reward
- 4. fly the helicopter with the current controller and **add this data** to the **sample flight data**
- 5. if we flew the target trajectory stop, otherwise go to step 2

Problems

- quick learning
- only simple maneuvers
- can't hand-code **complex** trajectories
 - should obey system dynamics
 - unable to explain how task is performed

→ Apprenticeship learning of trajectory

Learning the trajectory

• multiple demonstrations of the same maneuver

$$y_j^k = \begin{bmatrix} s_j^k \\ u_j^k \end{bmatrix}, \text{ for } j = 0..N^k - 1, k = 0..M - 1$$

- s: sequence of states
- u: control inputs
- goal: find "hidden" target trajectory of length T

$$z_t = \begin{bmatrix} s_t^{\star} \\ u_t^{\star} \end{bmatrix}, \text{ for } t = 0..T - 1$$

Graphical Model

• intended trajectory

 $z_{t+1} = f(z_t) + \omega_t$

• expert demonstration

 $y_j = z_{\tau_j} + \nu_j$

• time indices $\tau_j^k \sim \mathbb{P}(\tau_{j+1}^k | \tau_j^k).$

• intended trajectory satisfies dynamics, but $\mathbf{\tau}$ unknown

Learning Algorithm

- unknown τ

 inference is hard
- known τ
 - standard HMM

Algorithm

- make initial guess for τ
- alternate between:
 - o fix $\boldsymbol{\tau}$, run Baum-Welch algorithm on resulting HMM
 - choose new τ using dynamic time warping

Further adjustments

• time varying dynamics model

$$z_{t+1} = f_t(z_t) + \omega_t^{(z)} \equiv f(z_t) + \beta_t^* + \omega_t^{(z)}$$

- f: crude model
- β: difference between crude estimation and target
- *w*: gaussian noise

- incorporation of prior knowledge
 - loops on plane in space
 - flips with center fixed

Demonstration

Source: https://youtu.be/VCdxqn0fcnE

AlphaGo

Motivation

• Go

- 19x19 board
- goal: dominate the board
- \circ surrounded area
- captured stones
- \circ 4.6x10⁷⁰ possible states
- previous Als: amateur level

First stage

• Supervised Learning Policy Network p_σ

- input: board state s
- output: distribution over legal moves
- 30 million positions
- 57% accuracy
- **3 ms**
- Fast Rollout Policy Network p
 - faster
 - 24% accuracy
 - ο **2 μs**

Second stage

- Reinforcement Learning Policy Network p_o
 - \circ initialised with weights of p_{σ}
 - plays against random previous iterations
 - rewards:
 - +1 win
 - -1 lost
 - 0 else

Third stage

- Value Network v_ρ
 - value function for strongest policy v^p(s)
 - predicts outcome from position s
 - outputs single prediction
 - 30 million games of self-play as input

Monte Carlo Tree Search

Summary

- tournament against other Als
 - 5 seconds per turn
 - 99.8% winrate overall
- handicapped games (4 stones)
 - 77% against Crazy Stone
 - 86% against Zen
 - 99% against Pachi
- AlphaGo distributed
 - 77% against single machine
 - 100% against other Als
- 5:0 against Fan Hui
- 4:1 against Lee Sedol

Thanks for your attention!

Sources

Atari https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf https://wiki.tum.de/display/lfdv/Convolutional+Neural+Network+for+Game

Mario https://github.com/aleju/mario-ai

Helicopter http://cs.stanford.edu/groups/helicopter/papers/nips06-aerobatichelicopter.pdf https://people.eecs.berkeley.edu/~pabbeel/papers/AbbeelCoatesNg_IJRR2010.pdf

AlphaGo https://gogameguru.com/i/2016/03/deepmind-mastering-go.pdf https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/