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Motivation

● most successful RL applications
○ handcrafted features
○ linear value function or policy representation

➜ performance relies on quality of features

● advances in deep learning
○ high-level features from raw sensory data

➜ Deep Reinforcement Learning



Goal

● play Atari with only raw pixels as input

● reward: game score
○ can be delayed

● connect RL algorithm to deep CNN
○ directly working on RGB images
○ downsampled
○ grayscale



Experience replay and preprocessing

● replay memory
○ 1 million most recent frames

● one experience
○

● preprocessing function ᷪ(s)
○ stacks history of 4 images
○ crops 84x84 region of image

● initialise s1 = { x1} and ᷪ1= ᷪ(s1)



Network Architecture



Experience generation

● every k-th frame
○ with probability ḋ select random action at

● ḋ = 1
● anneals to 0.1

○ otherwise select
○ execute at, observe reward rt and image xt+1
○ set st+1= st, at, xt+1
○ preprocess ᷪt+1 = ᷪ(st+1)
○ store transition                            in replay memory



Deep Q-learning

● sample random experience

● set

● perform gradient descent step on 



Super Mario 
World 



Goal

● first level of Super Mario World

● deep Q-learning with replay memory and spatial transformer

● emulator: lsnes (using LUA API)

● neural net framework: Torch

● training on random parts of the level



Inputs and Outputs

● inputs:
○ last 4 actions as two-hot-vectors (A/B/X/Y and an arrow button)

○ last 4 screenshots, downscaled to 32x32 (grayscale, slightly cropped)

○ current screenshot, 64x64 (grayscale, slightly cropped)

● state captured every 5th frame ➜ 12 times per second

● replay memory size: 250.000 entries

● output:
○ Q-Values for every action in current state (8-dimensional vector)

○ choosing highest button and arrow value



Rewards

● +0.5 moving right

● +1.0 moving fast right (≥8 pixels)

● −1.0 moving left

● −1.5 moving fast left (≥8 pixels)

● +2.0 during level-finished-animation

● −3.0 during death animation

● Discount for future rewards: γ = 0.9



Policy

● ḋ-greedy policy

○ start: ḋ = 0.8

○ decreases to 0.1 over 400.000 actions

● random action: coin flip

○ randomize one out of two actions

○ randomize both actions



Demonstration

Source: https://youtu.be/L4KBBAwF_bE 

http://www.youtube.com/watch?v=L4KBBAwF_bE&t=213


Stanford 
University 

Autonomous 
Helicopter



Motivation

● challenging control problem
○ complex dynamics model

● exploration can cause crashes
○ expensive

➜ Apprenticeship learning



What is needed to fly autonomous?

● trajectory
○ desired path for the helicopter to follow
○ hand-coded

● dynamics model
○ learned from flying data
○ input: current state and controls
○ output: prediction where helicopter will be

● controller
○ feeds controls to fly trajectory
○ policy



Overview
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Algorithm

1. start with an example flight

2. compute a dynamics model and reward function based on the target 
trajectory and sample flight

3. find a controller (policy) that maximizes this reward

4. fly the helicopter with the current controller and add this data to the 
sample flight data

5. if we flew the target trajectory stop, otherwise go to step 2



Problems

● quick learning

● only simple maneuvers

● can’t hand-code complex trajectories
○ should obey system dynamics
○ unable to explain how task is performed

➜ Apprenticeship learning of trajectory



Learning the trajectory

● multiple demonstrations of the same maneuver

○ s: sequence of states
○ u: control inputs

● goal: find “hidden” target trajectory of length T



Graphical Model

● intended trajectory

● expert demonstration

● time indices

● intended trajectory satisfies dynamics, but τ unknown



Learning Algorithm

● unknown τ
○ inference is hard

● known τ
○ standard HMM

Algorithm
● make initial guess for τ
● alternate between:

○ fix τ , run Baum-Welch algorithm on resulting HMM
○ choose new τ using dynamic time warping



Further adjustments

● time varying dynamics model

○ f: crude model
○ β: difference between crude estimation and target
○ ᭱: gaussian noise

● incorporation of prior knowledge
○ loops on plane in space
○ flips with center fixed



Demonstration

Source: https://youtu.be/VCdxqn0fcnE

https://docs.google.com/file/d/0B2me0wOiVjE4bllTMXVyOGt3VWM/preview


AlphaGo



Motivation

● Go
○ 19x19 board
○ goal: dominate the board
○ surrounded area
○ captured stones
○ 4.6x1070 possible states

● previous AIs: amateur level



First stage

● Supervised Learning Policy Network pσ
○ input: board state s
○ output: distribution over legal moves
○ 30 million positions
○ 57% accuracy
○ 3 ms

● Fast Rollout Policy Network p�
○ faster
○ 24% accuracy
○ 2 µs



Second stage

● Reinforcement Learning Policy Network pρ
○ initialised with weights of pσ
○ plays against random previous iterations
○ rewards:

● +1 win
● −1 lost
●   0 else



Third stage

● Value Network vθ
○ value function for strongest policy vp(s)
○ predicts outcome from position s
○ outputs single prediction
○ 30 million games of self-play as input



Monte Carlo Tree Search



Summary

● tournament against other AIs
○ 5 seconds per turn
○ 99.8% winrate overall

● handicapped games (4 stones)
○ 77% against Crazy Stone
○ 86% against Zen
○ 99% against Pachi

● AlphaGo distributed
○ 77% against single machine
○ 100% against other AIs

● 5:0 against Fan Hui
● 4:1 against Lee Sedol



Thanks for your attention!



Sources
Atari
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://wiki.tum.de/display/lfdv/Convolutional+Neural+Network+for+Game

Mario
https://github.com/aleju/mario-ai

Helicopter
http://cs.stanford.edu/groups/helicopter/papers/nips06-aerobatichelicopter.pdf
https://people.eecs.berkeley.edu/~pabbeel/papers/AbbeelCoatesNg_IJRR2010.pdf

AlphaGo
https://gogameguru.com/i/2016/03/deepmind-mastering-go.pdf
https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/
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