Training robots with machine learning:
Juggling & Throwing

Based on
Robot juggling: Implementation of memory-based learning

TossingBot: Learning to throw arbitrary objects with Residual Physics

Training robots with machine learning

 Compared to digital tasks: slooow

 Starting new trials: not trivial

* Sometimes: Need fast predictions / decisions

* But also: highly useful

What does a robot-task look like?

* Input from environment
* Sensor data
e Camera

* |ssue command what robot should do
* Turn motor to position x
* Throttle/increase thrust by x

* Commands lead towards goal
e Can be very vague
* Need to understand environment

What kind of model to use?

parametric

* Mathematical function with
finite set of free parameters

* Global function fitting
e Don’t remember data

Examples:
* Linear regression
* Neural networks

non-parametric

* Mathematical function with
unlimited set of free parameters

 [ocal function fitting
e Remember data

Examples:
* N-nearest neighbor
e Kernel regression

Locally weighted regression (LWR)

* Non-parametric (memory-based)

e Estimate local linear models for different points

» Offers various statistical tools to:
* Assess reliability of lookups
e Optimize quality of lookup
* Handle noise and corrupted data

Locally weighted regression (LWR)

 Unweighted regression:
e Find solution to equationsy = X B (solve XTXB = XTy)
* X: mx (n+1) matrix
 m = # data points
* n=#input dimensions

. Prediction of query point x,:

= quB

* Problem: each point is equally weighted
* Solution: Weight by distance

Locally weighted regression (LWR)

* Introduce distance to query point x,

2
* For each stored data point: d; = =15 (Xl-j — xqj)
* Weight for every point: w; = f(diz)

1

* Simple weighting function: w; = %

—d?
* Better scheme: w; = exp (21{;)

Locally weighted regression (LWR)

* For each stored data point (index i)
* Calculate distance to query point
* Calculate weighting, based on distance
* Multiply row in X and y with w;

* Apply regression to weighted matrices

* Additionally: ridge regression
e Classic regression: XTXB = X'y
e Ridge regression:(X"X + A)p = XTy

LWR - Comparison

[=ia)

(=] =

(%]

Cad

[

.
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

—

& |

= fa - o
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

£

2 |45]

=

0
(a) ©

Figure 1.

7/15/2019

1 2 3 4 5 6 7

=

J

[==]

=

(=]

LA

=N

(¥]

]

-

E(b} 0

1 2 3 4 5 6 7

=

5(0)

: [1]
\

\

. \

. \

E *

] AN

1, AN

0 1 2 3 4 5 6 7 8

Characteristic performance of three different nonparametric function approximation tech-

niques: (a) nearvest neighbor, (b) weighted average; (c) locally weighted regression

Stephen Schaumann

10

Exploration

Problems:
* High-dimensional space
e Sparse data

Even worse:
 Robots are slow

* Some regions may be costly / unsafe

—> Random search not feasible

Shifting Setpoint Exploration Algorithm (SSA)

e Approach: slow and steady

* Break task down into two parts

* Fast timescale: Keep system controlled at fixed certain points
* Slow timescale: Shift setpoints towards goal

— Exploration around setpoints ensures confidence in that region

— Shifting moves the system slowly but steadily towards target,
learning along the way

SSA - Example

e Car driving along mountain road
e Task:

 drive at constant horizontal speed
Xgesireq from left to right

1- x
- " .1:'|=1_ ms exp .1:'1:
 Minimize fuel consumption 2| | Sy - rem(xed)
E v |xT= llxﬂ_;;l_ - 5=06
* Interaction: @ 5 position x ——— 10
* Noisy feedback of x and x [1]
e Control thrust F at 5Hz

7/15/2019 Stephen Schaumann

13

SSA - Initialization

1.

2.

3.

Start at random location
Execute a few random trials

Search for point with highest confidence = Declare as setpoint

(xg‘jin' FS' xg‘jout)T

Try to reach setpoint from each new trial

SSA - Procedure

1.

2.

3.

4.

Learn to reach setpoint until certain confidence
Take derivative of Xgegireqd — Xs our W.r.t. command Fg
Calculate correction AFs and update: F¢ = F¢ — AF

Assess fit at updated setpoint
* If quality above some threshold: continue with 1.
e Else: Terminate

SSA — Example result

velocity x

7/15/2019

N
TATTIT e BT T

s L
WIS e T FO e rer TR T T T

y
T T T T s TRt

X —

Phase space

Stephen Schaumann

height h

=

force f

1- '
1_ _1 B
s exp(x’)

hi x) =————————=.
1+ exp{x—35)
-5)2

.1"=[x—,_,'; s=06
252

POSILION ¥ =——— 10

Position-action space

[1]

16

Robot juggling (“Devil sticking”)

7/15/2019

17

Task description

* Task state vector
* Impact state with other hand stick at nominal position

T
« x=(p,6,%7y,0)
* After stick leaves hand: estimate impact with other stick from flight trajectory

* Task command
* Displacement of hand stick from nominal position (x5, yp)"

* Center stick angular velocity threshold 6,
T
* Throw velocity vector (vx, vy)

* U= (Xh;Yh» étva’ vy)T

, T
» Each throw generates experience vector (x7, uy, xf.1)

7/15/2019

Data Density

Goal State of
Right Hand

(@)

()

{%‘%‘“ Goal State of

_—Throw to left

since no local model

=¥ Left Hand in this region

(b)

Stephen Schaumann

[1]

19

Devil sticking:
Learning curves

a) Simulation results

b) Real robot results

c) Real robot results with small
random noise in commands

7/15/2019

200

150

1004

Number of Hits per Tral

50

A P o o E—
FTTTTTTTTTT I T T I T T I T T T I T T T T I T T T I T T I T T T T T I T T I I T II T T

1 6 11 16 21 26 31 36 41 46

(a)

140

Trial Number

120
100
80
60
40

Number of Hits per Trial

20

| | { LYY | LA LN
e W N | ¥ o] UL 'S Y|

1

n A it S Y \of
T T T I T T I e T T T e T T I T eI I e T T T T T I T eI T T T T T T T IaT o T

11 21 31 41 a1 61 71 81 91 101 111

Trial Number

1200 -
1000%
300%
euoé

400

Number of Hits per Trial

200

0

(c)

Stephen Schaumann

EEEEREEENEE RN RN EE RN EEEEEEEEEEEERER
1 11 21 31 41 a1

Trial Number

[1]

20

Model-based Reinforcement
Learning of Devilsticking

Stefan Schaal & Chris Atkeson

[2.1]

[2.2]

More recent: TossingBot (March 2019)

* Teach robot arm to grab and
throw arbitrary objects

7/15/2019

More recent: TossingBot (March 2019)

* Teach robot arm to grab and
throw arbitrary objects

* 500+ mean picks per hour

* Generalization to new objects \! B \! C \?
| [3]

7/15/2019 Stephen Schaumann 24

TossingBot - Structure

Overhead Camera

7/15/2019

RGB-D Heightmap I

Physics-based

x16 orientations

/) (per grasping angle)

Perception

Module
(ECN ResNet-7)

7

Grasping
Module
(FCN ResNet-7)

Grasping Scores

x16

(pixel-wise horizontal grasps)

Throwing

Module
(FCN ResNet-7)

Controller

Stephen Schaumann

Sim. throwing velocity v

25

Throwing Release Velocity

(per pixel-wise sampled grasp)

[3]

[4]

TossingBot - Results

GRASPING AND THROWING PERFORMANCE IN REAL (MEAN %)

Grasping Throwing
Method Seen Unseen Seen Unseen
Human-baseline - — - 80.1+10.8
Regression-PoP 83.4 75.6 54.2 52.0
Physics-only 85.7 76.4 61.3 58.5
Residual-physics ~ 86.9 73.2 84.7 82.3

7/15/2019

1.0

o
o

Throwing Performance
o
I

=
[

©
o

Residual-physics
Physics-only
Regression-PoP

/

,-M-"’"“\J‘ff!_

Fa)
/Ma.-/w TN

veatetat bt il

Stephen Schaumann

3000 6000 9000 12000
Number of Training Steps

15000

27

3]

Conclusion

* Robot learning has long history with various methods
* Challenging task, additionally constrained by physical limitations

* LWR successful approach, already at early years
* Has limitations: More data increases lookup-time

* Today: new approaches using Deep learning and hybrid methods

Sources

(1) Stefan Schaal and Christopher G. Atkeson: “Robot Juggling: An Implementation of
Memory-based Learning”

(2) https://www.youtube.com/user/cgal959/videos (Chris Atkeson)
(1) A Robot Learning Devil Sticking https://www.youtube.com/watch?v=KZdBBKgOyBg
(2) 3 ball juggling and devil sticking by a robot https://www.youtube.com/watch?v=pKJEbs64Y20
(3) Sarcos Dextrous Arm one ball paddle juggling https://www.youtube.com/watch?v=rFHjHUqyp-I

(3) “TossingBot: Learning to Throw Arbitrary Objects with Residual Physics”
https://arxiv.org/abs/1903.11239

(4) https://tossingbot.cs.princeton.edu/
(5) www.cs.cmu.edu/~cga/bighero6 (build-baymax.org)

(6) Wikipedia: Big Hero 6 (film)
https://en.wikipedia.org/w/index.php?title=Big_Hero_6_(film)&oldid=902898498

7/15/2019 Stephen Schaumann 29

https://www.youtube.com/watch?v=KZdBBKgOyBg
https://www.youtube.com/watch?v=pKJEbs64Y2o
https://www.youtube.com/watch?v=rFHjHUqyp-I
https://arxiv.org/abs/1903.11239
http://www.cs.cmu.edu/~cga/bighero6

Bonus slides

Fun fact

* Chris Atkeson‘s work was inspiration

lild-baymax.org, ™ I8

2 (5]

7/15/2019 Stephen Schaumann

[6]

31

Implementation of LWR

* 33 MHz Intel i860 microprocessor

e Peak computation rate: 66 MFlops (effective comp. rate: 20 MFlops)
* n =10 inputs, o = 5 outputs

* Lookup time = 15 ms on database of m = 1000 points

Optimizing LWR

The LWR fit was optimized using different
measures:

a) Global cross validation

b) Local cross validation

c) Local prediction intervals

7/15/2019

-—

0.5

@

=

0.5

(®)

0 0.2

0.4

W=

0.6

0.8

y—}

0.5

— y-predicted
prediction interval

noisy data

0.5

Stephen Schalfhann

-0z

[1]

33

7/15/2019

Stephen Schaumann

[3.3]

34

