
Contents

1 First Lecture 4
1.1 Rationale . 4
1.2 Goal . 4
1.3 Kinds of variables . 4
1.4 Kinds of training data . 4
1.5 Notation . 6
1.6 Models . 6
1.7 All models are uncertain! . 7

2 Second Lecture: 21.10.2015 7
2.1 Classification . 7

3 Third Lecture: 23.10.2015 10
3.0.1 How well does NN work? . 11

4 Fourth Lecture 12
4.1 Quadratic and Linear Discriminant Analysis (QDA, LDA) 13

4.1.1 QDA . 14

5 Fifth Lecture 14
5.1 QDA Learning Algorithm . 15
5.2 QDA prediction . 16
5.3 Linear Discriminant Analysis (LDA) . 16

6 Sixth Lecture 17
6.1 Linear Discriminant Analysis (LDA) . 17
6.2 Logistic Regression . 18

7 Seventh Lecture 20
7.1 Logistic Regression . 20
7.2 Lecture so far . 21
7.3 Histograms and Density Trees . 21

8 Eight Lecture 24

9 Lecture 10/11 26
9.1 Generative non-parametric models . 26
9.2 Combine density trees and naive Bayes . 27
9.3 Rank order standardization . 27
9.4 Training algorithm . 28
9.5 Prediction . 28
9.6 Generate new instances of class k . 29

1

10 Lecture 12/11 29
10.1 Regression . 29
10.2 Linear Regression . 30

11 Lecture 19/11 32
11.1 Ordinary Least Squares . 32

12 Lecture 24/11 35
12.1 Weighted least Squares . 35
12.2 Total Least Squares (TLS) . 36
12.3 Regularized Least Squares . 37
12.4 Ridge Regression . 38
12.5 Lasso regression (“least absolute shrinkage and selection operator”) 39
12.6 Orthogonal matching pursuit . 40

13 Lecture 26/11 40
13.1 Non-linear Regression . 42

13.1.1 Levenberg-Marquardt-Algorithm 42

14 Lecture 01/12 43
14.1 parametric non-linear least-squares . 43
14.2 Non-parametric non-linear least-squares 44
14.3 Reducing non-linear regression to linear regression 45

15 Lecture 3/12 46

16 Lecture 8/12 50

17 Lecture 10/12 52

18 Lecture 15 / 10 55
18.1 How to report performance as a function of decision threshold 55
18.2 How to estimate optimism ? (= test error) 56
18.3 Empirical estimates . 57
18.4 (Semi-) Analytical methods . 59

19 Lecture 07/01 59
19.1 Unsupervised Learning . 59
19.2 Principal Component Analysis . 59
19.3 application: eigenvaces (face recognition) 61

20 Lecture 12 / 01 61
20.1 Linear Dimension Reduction . 61
20.2 Kernel PCA . 62
20.3 Local Linear Embedding (LLE) . 63

2

20.4 Robust PCA . 64

21 Lecture 12/01 65
21.1 Alternative objective functions in linear dimension reduction 65

22 Lecture 19/01 68
22.1 Independent component analysis (ICA) 68

22.1.1 Approximate Solution via FastICA (Hyrarinen and Oja 68
22.2 Clustering . 69

23 Lecture 21 / 01 70
23.1 Clustering: k-means and EM algorithm 70
23.2 Expectation-Maximization Algorithm . 72

24 Lecture 26 / 01 73
24.1 Clustering with EM algorithm . 73
24.2 State-of-the-art Classification Methods . 74

25 Lecture 28 / 01 76
25.1 Support Vector Machines (SVM) . 76
25.2 SVM algorithms . 77

26 Lecture 02/02 78
26.1 Ensemble Methods for Classification . 79
26.2 Random Forests . 79

27 Lecture 04 / 02 81
27.1 Ensemble Classifiers . 81
27.2 AdaBoost (Freund & Shapire, 1997) . 82
27.3 Adaboost algorithm . 83
27.4 Cascaded classifiers (Viola & Jones 2001) 83

3

1 First Lecture
First Lesson

1.1 Rationale

• We are interested in quantities Y (“response”), but we cannot measure Y directly

• We have access to quantities X (“features”), which are related to Y .

• Both X,Y are generally (huge) vectors/matrices

• We see a mapping f(X) = Y ; but no analytical function f(·) is known

• we therefore use a generic model f(X|θ) = Y , where θ are free parameters that
tailor the model to the application

• mapping can be uncertain:

– intrinsic uncertainty (eg. radioactive decay, chaotic systems)

– insufficient information in X

• ⇒ probabilistic model “posterior probability” p(y|x).

1.2 Goal

Select best possible model & parameters for any given application given a set of training
data

1.3 Kinds of variables

• X,Y ∈ R → numerical

• X,Y ∈ {A,B,C, ...} → ordinal if there is an order A < B < C (e.g. “warm”,
“cold”, “hot”) or categorical otherwise

1.4 Kinds of training data

• supervised learning: we can in principle measure Y , but not in a routine manner

– we need control conditions & expensive equipment

– measurement is destructive (eg. crash test)

– asking an expert is expensive (eg. radiologist)

– Y is only known in hindsight

⇒ we have training pairs (Xi, Yi)i=1,...,N that describe the mapping f(Xi) = Yi
(generating these pairs is called “labeling / annotation”)

batch training use entire training set

online training update the model as data pairs arrive one at a time

4

active learning learning algorithm actively prepares Xi whose Yi would be very
instructive

• unsupervised learning: Yi are unknown, only (Xi)i are known (also called “data
mining”)

– determine useful categories

– find interesting features and drop uninteresting (aka feature selection, dimen-
sion reduction), fight the “curse of dimensionality”

– group data by similarity

– detect outliers

– estimate the probability distribution p(x) (aka “feature density / evidence”)

• weakly supervised learning: reduce the effort to create training data

– coarse annotation: “this picture contains an elephant”, instead of “this pixel
is part of an elephant”

– delayed annotation: “this sequence of moves lead to a loss” instead of “this
is a bad move”

– Semi supervised learning: combine (Xi, Yi)i=1,...,N with (Xj)j=N+1,...,M .

Summarizing

response
numeric categorical

tr
a
in
in
g
d
a
ta

supervised regression classification

unsupervised feature reduction, clustering
metric learning

Second Les-
sonPlans for the future

• Chapter 1 classification

• Chapter 2 regression and the mathematical theory of ML

• Chapter 3 How to evaluate the quality of our solution!

• Chapter 4 unsupervised learning

• Chapter 5 advances classification methods (support vector machines, random
forest & boosting ensemble methods, neural networks)

• Chapter 6 find project (own topic)

5

1.5 Notation

• X = features, X ∈ RD, Xj a particular feature, j = 1, ..., D

• Y = responses, Y ∈ R , Y ∈ {A,B, ...}; if Y is categorical, C is the number of
classes, k is the class index, k = 1, ..., C or for C = 2: k ∈ {0, 1} or k ∈ {−1, 1}

• training instances i = 1, ..., N

• arrange training features as a matrix (rows are instances, columns are features)

• arrange training response in a vector

• f = 1, ..., T , l = 1, ..., L universal order

1.6 Models

modeling the full posterior p(Y |X) is usually intractable
⇒ naive independence assumptions st p(Y |X) decomposes into the product of simpler

probabilities:

p(Y |X) = pA(YA|XA)pB(YB|XB)pC(YC |XC)

where XA ∪XB ∪XC = X, YA ∪ YB ∪ YC = Y .
Fundamental factorization / decomposition: training data (& real data) consist of a

set of individual events where we assume:

• all events are independent

• probabilities controlling the events do not change over time (⇒ events identically
distributed)

aka “independent, identically distributed” data (iid), st

p({A,B,C}) = p(A)p(B)p(C)

examples for noniid:

• written exam: student looks at neighbor’s solutions

• pixels in an image: p(pixeli ∈ elephant) is much bigger when neighbors are also in
the elephant

⇒ need structured models (eg Markov random fields)

6

1.7 All models are uncertain!

• intrinsic uncertainty

• modeling error: a model is not reality!

• finding optimal model parameters θ may be intractable or difficult

• trade off between these two

• training dataset is finite (no free-lunch theorem)

• features X are noisy

⇒ error analysis is an important part of ML

2 Second Lecture: 21.10.2015

2.1 Classification
First Lesson

Classification: response Y ∈ {0, 1, ..., C − 1} no ordering and C classes.
When we have a classifier f̂(x) = Ŷ , determine the error rate on a test set (Xi, Yi)i=1,...,N .

The classifier predicts Ŷi for given Xi, giving us the following table

AC/PC 1 2 ... C
1
2
...
C

Table 1: Confusion Matrix

AC: Actual Class, PC: Predicted Class
The error rate is then #errors

#total . Considering the special case of c = 2 we call Y = 0
“negative” and Y = 1 “positive” (eg Y = 0 new drug doesn’t work, Y = 1 new drug does
work). We have the following possible outcomes: True Negatives (TN), False Negatives
(FN), False Positives (FT), True Positives (TP), giving us for the error rate:

#FN +#FP

#TN +#FN +#FP +#TP

Possible Questions

1. How bad can a classifier perform:

• we have no features or features are unrelated to response

• but we know how often each class occurs on average, also called the prior
probability aka πi or p(Y).

7

Case 1 All classes occur equally: πi = 1/C Then we have p(correct) = 1/C
and p(error) = (C − 1)/C as an upper bound for classification

Case 2 Priors are different: define imax = argmaxi πi most frequent class,
giving us an error rate of p(error) = 1− πimax

general upper bound p(error) ≤ 1−maxi πi

2. How well can we perform:

• we have features, but they are not perfect ⇒ we have intrinsic error

• ignore all other error sources ⇒ lower bound on the error

• We know the correct posterior p(y|x) = p̂(y|x)
• we are required to make a hard decision f̂(x). best possible decision function
f̂ minimizes expected error.

p(error) = Ex[p(error|x)] =
∫
p(f̂(x) ̸= y|X)p(x)dx

The integral is minimized if p(f̂(x) ̸= y|x) is minimized for every x.

• For c = 2 : we have f̂(x) = 0

{
true negative, p(y = 0|x)
false negative, p(y = 1|x)

and similarly for

f̂(x) = 1.

p(error|x) =

{
p(y = 0|x) if f̂(x) = 1

p(y = 1|x) if f̂(x) = 0

is minimized when f̂(x) = argmaxY p(y|x). This rule is called the Bayes
decision rule. We get that p(error) =

∫
(1−maxy p(y|x))p(x)dx1

If X is continuous, we can define:

• decision regions: maximal connected regions in X-space where f̂(x) = const.

• decision boundaries: between decision regions2

Bayes decision boundaries are optimal.

In general we have two different kinds of models:

discriminative models learn p̂(y|x) directly (nearest-neighbor classifier, decision tree)

1Those two are obviously valid in general not just in our two-case example
2on this boundary we have to decide arbitrary

8

generative models expand using Bayes formula

p(Y |X) =
p(X|Y) · P (Y)

P (X)

we call p(Y |X) the posterior, p(X|Y) likelihood, p(Y) prior and p(X) evidence or
feature density. A generative model learns likelihood, prior & feature density. Thus
we can generate more data from the same distribution. Note that for classification,
we don’t need the evidence since Yi = argmaxY P (Y |X) ⇔ P (Y=i|X)

P (Y=j|X) > 1 ∀j ̸= i.3

In case of equal sized priors we get the likelihood ratio: p(X|Y=i)
p(X|Y=j > 1 ∀j ̸= i

example 1: pens
Second Les-
sonY ∈ {red, black}, X ∈ {ballpen, fineliner}, p(Y) = 1

2 , p(X) = 1
2 . p(bp|red) = 2

7 ,
p(fl|red) = 5

7 , p(bp|balck) = 5
7 , p(fl|black) = 2

7 . Bayes gives us p(red|bp) = 2
7 and

p(black|bp) = 5
7 .

example 2

One continuous feature: X ∈ [0, 1], Y ∈ {0, 1}, p(y = 0) = p(y = 1) = 1
2
4.

Likelihoods:

p(x|y = 0) = 2− 2x and p(x|y = 1) = 2x

Feature density:

p(x) = p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1) = 1

and finally the posteriors are:

p(y = 0|x) =
(2− 2x)12

1
= 1− x and p(y = 1|x) =

2x · 1
2

1
= x

This gives us the following decision strategy:

• Select threshold t ∈ [0, 1].

• rule a: f̂(x) = 0 ⇔ x ≤ t

• rule b: f̂(x) = 1 ⇔ x ≤ t

We have the following errors:

p(error|x ≤ t) =

{
p(y = 1|x) if rule a

p(y = 0|x) if rule b
and p(error|x > t) =

{
p(y = 0|x), if a

p(y = 1|x), if b

3This ratio is also called the odds, or the log-odds if you take the logarithms of this
4giving us a so called uninformative prior

9

pa(error) = Ex[p(error|x)] =
∫ ⊤

0
p(y = 1|x)p(x)dx+

∫ 1

t
p(y = 0|xp(x)dx

=

∫ ⊤

0
(1− x)dx+

∫ 1

t
xdx =

1

4
+

(
t− 1

2

)2

The expected error for rule b (working likewise) pb(error) =
3
4 − (t− 1

2)
2. Such that we

get pb(error|t) = 1− pa(error|t)
The error is minimal for pa(error|t = 1/2) = 1/4, which is called the “Bayes er-

ror”. The corresponding rule is called “Bayes decision rule”. Always place the decision
boundary where the posteriors intersect, in this case 1/2.

3 Third Lecture: 23.10.2015
First Lesson

• worst case error: pure guessing p(error) ≤ c−1
c (c number of classes)

• best case error: ignore all error sources except intrinsic error: Bayes error

p(error) =

∫
(1−max

y
p(y|x))p(x)dx

This5 is also known as the maximum a posteriori decision (MAP).

• Bayes rule

p(y|x) = p(x|y)p(y)
p(x)

• if p(y) = 1
c we have an uninformative prior then we can equivalently use the

maximum likelihood decision (ML) giving us p(error) = 1− 1
c

∫
maxy p(x|y)dx

Nearest-Neighbor Classifier

• Intuitive idea: in an unknown situation, act as you did in the most similar situation
in the past.

– “most similar”: minimum distance in feature space

– “act as you did”: copy the class label Y of the nearest training instance

Let (Xi, Yi)i=1,...,N be the training data, then:

f̂(X) = Yk|k = argmin
j
d(X,Xj)

is our rule. The effect is that we split the feature space according to the Voronoi tessellation:

neighbors(Xk) = {X|d(X,Xk) < d(X,Xj) ∀j ̸= k}

⇒ decision boundaries: bisectors between neighboring training points of different
classes

5the first term in the integral

10

3.0.1 How well does NN work?
Second Les-
son• The NN classifier memorizes all training instances ⇒ error on the training set

(TS error): 0

⇒ only the out of training set error (OTS) error is interesting, or iid error (TS +
OTS)

• finite training set:

– only few general results exist: OTS error can be arbitrary high (“no free lunch
theorem”6)

– in simple cases analytic expressions exist

– example: p(x|y = 0) = 2− 2x, p(x|y = 1) = 2x, p(y) = 1
2 , p(y = 0|x) = 1−x,

p(y = 1|x) = x. p∗(error) = 1
4

assumption. One prototype for each class, (x0, y0 = 0), (x1, y1 = 1). Then
we have the bisector t = x0+x1

2 . We have

∗ rule a: x0 < x1

∗ rule b: x0 > x1

Then

p(error) =

∫ 1

0
p(error|rule a, t) · p(rule a, t|x0, x1)dt +∫ 1

0
p(error|rule b, t)p(rule b, t|x0, x1)dt

– to get threshold t and rule (a/b), we must have x0 = t(−/+)x′, x1 = t(+/−)x′,
x′ ≥ 0.

⇒ p(rule a, t|x′) = 2 · p(x0 = t− x′|y = 0) · p(x1 = t+ x′|y = 1)

Integration boundaries: 0 ≤ x′ ≤

{
t if t ≤ 1

2

1− t if t ≥ 1
2

[...and so on...]

We get an error of 35%.

• asymptotic analysis for N → ∞

– Definition: a classification rule is called consistent if it converges towards the
Bayes rule as N → ∞.

– (Derivation: Duda, Hart, Starl. Chapter 4.5)

– Result: p∗ ≤ p∞ ≤ p∗(2 − c
c−1p

∗) where p∗ is the Bayes error, p∞ NN class
N → ∞

6topic of a later lecture

11

– e.g. p∗ = 0, then p∞ = 0,

p∗ = c−1
c , then p∞ = c−1

c

p∗ = ε, then p∞ = ε(2− c
c−1ε) ≈ 2ε

• empirical/experimental error analysis

– TS error is meaningless (=0) ⇒ need an OTS error

– p(OTS error) = h(TS error) +ω, where h(TS error) is called the empirical
error (or TS error), and ω is the “model optimism”.

– A model with big optimism “overfits” the training data

⇒ split the database into TS and OTS, where you train on the TS and
measure the error on the OTS. This split needs to be done at random; flip
roles, repeat and compute the average error of both trials (called 2-fold cross
validation)

– better average (+ a variance) of the error: more repetitions: k-fold cross-
validation

1. Split data D into K groups (at random)

2. For each j ∈ {1, ...,K}: Train on D−j and evaluate on Dj .

3. Average the error results and variance

Typical values are k = 5, 10 or k = N aka leave one out cv (LOOCV)

4 Fourth Lecture
First Lesson

Nearest-Neighbor Classifier

• advantages:

– simple & intuitive concept

– easy to implement

– often works well in practice, esp. if one has a lot of data

• problems:

– NN classifier is not consistent [p∞ ≈ 2p∗] ⇒ use k-NN method

∗ find the k nearest training instances to the query

∗ predict the majority vote of those k instances

∗ usually smaller error than 1-NN

∗ consistent when k → ∞, k
N → 0 (as N → ∞), ex: k = logN , k =

√
N

– speed problem: naive implementation O(d · N), where d = #features,
N = #instances (sequential search for NN)

∗ reduce d:

12

· feature selection

· dimension reduction

∗ Reduce N:

· remove unnecessary instances

· drop instances whose neighbors have all the same class ⇒ requires
exact computation of the Voronoi tessellation O(Nd/2) ⇒ too ex-
pensive when d big

∗ approximate algorithm:

· maintain an active set of instance (initially empty)

· for all instances: compute NN prediction w.r.t. current active set
and if correct ⇒ drop training point, otherwise add it to the active
set

∗ between these extremes:

· clustering algorithms, vector quantization ⇒ later

∗ speed-up the algorithm

· use an optimal data structure instead of sequential search:

“k-D tree” generalizes binary search tree to k dimensions

search complexity: O(d : min(N, logN · 2d)) 7

· use early stopping in distance computation

· use approximate NN search: since measurements are noisy insisting
on exact NN is pointless

∗ locality preserving hashing

∗ minimize the hidden constant in O(d ·N)

∗ use 64-bit hash functions ⇒ comparison takes only 1 CPU clock cycle
⇒ sequential search is very fast

– The NN depends on the distance function: units matter so always stan-
dardize (and center) your units

– use domain knowledge to design a good distance ⇒ later

– use metric learning

4.1 Quadratic and Linear Discriminant Analysis (QDA, LDA)
Second Les-
son• minimum number of training instance for NN: 1 per class

⇒ Use average of each class: mk = 1
Nk

∑
j:Yj=kXj , where Nk = # samples in class

k, giving us a nearest mean classifier, which works well for spherical clusters 8

7only use for d ≤ 20
8the lecture contains some sketches here

13

⇒ we need to consider the cluster shape, and thus generalize the sphere to the
ellipsoid. In terms of degrees of freedom we have for a sphere d+1 ∈ O(d) (center
+ radius) and for the ellipsoid d+ d

2(d+1) ∈ O(d2) (center + orientation & shape)

⇒ choose one multi-variate Gaussian per class

– ellipsoid shaped clusters

– easy to train

– CLT: superposition of infinitely many independent random events has Gaus-
sian distribution

4.1.1 QDA

• assumption: likelihood p(x|y = k) is (approximately) Gaussian for each class k

• prediction rule: for query point X

– compute posterior p(y = k|x) = p(x|y=k)p(y=k)
p(x) and predict class with maxi-

mum posterior9

Form of the Gaussian distribution10

p(x|µ,Σ) = (2π)−d/2|Σ|−1/2 exp
(
−1

2(x− µ)⊤Σ−1(x− µ)
)

How to fit a Gaussian to training data? The most common method is the maximum
likelihood method

• assume that the training data are representative (i.e. very typical) for the true
distribution

⇒ training set has high probability under the distribution

⇒ look for the distribution (among the allowed choices, i.e. Gaussians) that max-
imizes the probability of the data

5 Fifth Lecture
First Lesson

• generative method: p(Y |X) = P (X|Y)p(Y)
P (X)

• parametric method: fix type of distribution (e.g. multivariate Gaussian) and only
learn its parameters

• multivariate Gaussian:

p(X|m,S) = (det(2πS))−1/2 exp
(
−1

2(x−m)⊤S−1(x−m)
)

9we assume p(y = k) = Nk
N

10not the notation of the lecture

14

• maximum likelihood principle: choose parameters such that the likelihood of the
observed data is maximized.

• Let {xi}i=1,..,Nk
11 be the training instances with Yi = k.

p(x1, ..., xn)
iid
= p(x1) · · · p(xN) = p(x1|m,S) · · · p(xN |m,S)

• we often work with the log-likelihood instead:

L = log p(x1, ..., xn) = log
∏
i

p(xi|m,S)

=
∑
i

log p(xi|m,S)

=
∑
i

[
log

1√
det(2πS)

− 1

2
(xi −m)⊤S−1(xi −m)

]

= −N
2
log det(2πS)− 1

2

∑
i

(xi −m)⊤S−1(xi −m)

Maximizing this log-likelihood we get:

0 =
∂

∂m
L =

∑
S−1(xi −m)

⇒ m̂ =
1

N

∑
i

xi (aka sample average)

and for the variance matrix we get:

Ŝ =
1

N

∑
i

(xi −m)(xi −m)⊤ (aka sample covariance)

[for the rest of this computation see any old ML book (for example Bishop’s PRML)]

• Some matrix calculus rules that are useful to derive this result:

∂

∂A
log detA = (A⊤)−1

∂

∂A
tr(A ·B) = B⊤

5.1 QDA Learning Algorithm

1. for each class k = 0, ..., C − 1 12 compute the class mean m̂k = 1
Nk

a) compute the class mean m̂k and variance Ŝk = 1
Nk

∑
i:yi=k(xi−m̂k)(xi−m̂k)

⊤

b) define likelihood p(x|y = k) = p(x|m̂k, Ŝk)

c) compute prior p(y = k) = Nk
N

11to simplify notation Nk is sometimes abbreviated to N
12C:=# of classes

15

5.2 QDA prediction
Second Les-
son• new sample x :

⇒ ŷ = argmax
K

p(x|y = k)p(y = k)

p(x)
⇔ argmax

K
p(X|Y = k)p(y = k)

⇔
[
argmax

k
log p(X|Y = k) + log p(Y = k)

]

⇔ argmax
k

[
−1

2
log det(2πŜk)−

1

2
(X −mk)

⊤Ŝ−1
k (X −mk) + log p(y = k)

]
⇔ argmax

k

[
−1

2
(X − m̂k)

⊤Ŝ−1
k (x− m̂k)− bk

]
⇔ argmin

[
1

2
(x− m̂k)

⊤Ŝ−1
k (x− m̂k) + bk

]
where −bk = −1

2 log det(2πŜk) + log p(y = k)

Special case: S = 1σ2, then QDA : argmink(x − m̂k)
⊤(x − m̂k) + b′k where the first

product is the squared Euclidean distance d2(X, m̂k). If the sample sizes are also the
same, (i.e. Nk

N = 1
C) we get the nearest mean classifier.

(X −m)⊤S−1(X −m) = d2S(X,m)

is called the “Mahalanobis distance “, it is a generalization of the euclidean distance.
⇒ QDA is the nearest mean classifier under Mahalanobis distance. 13

5.3 Linear Discriminant Analysis (LDA)

• Suppose clusters for all classes have the same shape⇒ ∀k : Sk = Sw (aka. ”within class co-
variance”)

QDA: argmaxk

[
−1

2(x− m̂k)
⊤Ŝ−1

w (x− m̂k)− bk

]
expanding we get

−1

2

(
x⊤Ŝ−1

w x− m̂⊤
k Ŝ

−1
w x− x⊤Ŝ−1

w m̂k + m̂⊤
k Ŝ

−1
w m̂k

)
giving us for the LDA:

argmax
k

[
x⊤Ŝ−1

w m̂k + b′k

]
= argmax

k

[
w⊤
k x+ b′k

]
where wk = Ŝ−1

w m̂k giving us a weighted sum of the features in the first summand.14

13while Euclid treats all axis the same, Mahalanobis gives different weights to the different axis
14since b′k is derived from theory it often won’t be appropriate, so we estimate it practically (through

CV)

16

We have

Ŝw =
1

N

∑
i

(Xi − m̂Yi)(Xi − m̂Yi)
⊤

i.e. Xi is “compared” to the local class mean and not the global one.
Concentrating on only two classes (C = 2) we have:

argmax
(
w⊤
0 X + b0, w

⊤
0 x+ b1

)
⇔ decide Ŷ = 1 if (w⊤

1 x+ b1)− (w⊤
0 x+ b0) > 0

⇔ (w⊤
1 − w⊤

0)x+ (b1 − b0) > 0

⇔ w⊤x+ b > 0

Decide ŷ = 0 if w⊤x+ b < 0, where w = Ŝ−1
w (m̂1 − m̂0)

6 Sixth Lecture
First Lesson

6.1 Linear Discriminant Analysis (LDA)

• two class case: decision rule

ŷ =

{
1, if w⊤x+ b ≥ 0

0, if w⊤x+ b < 0

where w = S−1
w (m1 −m0) and b = threshold 15

• properties:

– w′ = τw, b′ = τb ⇒ decision doesn’t change

– let µk = w⊤mk + b be the projected means, σ2 = w⊤Sww projected covari-
ance16

– w = S−1
w (m1 −m0) maximizes separability (µ1−µ0)2

σ2

– 2-class LDA also follows from least-squares optimization

ŵ = argmin
w

N∑
i=1

(w⊤xi + b︸ ︷︷ ︸
prediction

− zi︸︷︷︸
truth

)2

if the classes are balanced (N0 = N1): zi =

{
1, if yi = 1

−1 if yi = 0
, if they aren’t we

set zi =

{
N
N1
, if yi = 1

− N
N0
, if yi = 0

.

15choose via CV
16a one-dimensional example picture follows here

17

Set derivatives with respect to w and b to zero and solve for w and b.(
NSw +

N0N1

N
SB

)
w = N(m1 −m0)

where SB = (m1 − m0)(m1 − m0)
⊤ is called the between-class covariance

giving us

NSww +
N0N1

N
(m1 −m0)

(
(m1 −m0)

⊤w
)

︸ ︷︷ ︸
τ(m1−m0),

= N(m1 −m0)

NSww = τ ′(m1 −m0)

Sww = τ ′′(m1 −m0)

w = τ ′′S−1
w (m1 −m0)

6.2 Logistic Regression
Second Les-
son• misnomer, actually it is classification

• LDA and QDA are generative models (learn likelihood and prior = RHS of Bayes)

• logistic regression makes the same assumptions as LDA (Gaussian likelihoods, com-
mon covariance Sw) but as a discriminative model (learn posterior = LHS of Bayes)

• stick with two class case ⇒ we only have to learn one posterior, because
p(y = 0|x) = 1− p(y = 1|x)

• for simplicity: balanced data, N0 = N1 and we center the data x′i = xi−m, where
m = 1

N

∑
i xi. Then

1
N

∑
i x

′
i = 0 and m0 +m1 = 0 or m0 = −m1

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
p(x|y = 1)

p(x|y = 0) + p(x|y = 1)
since N0 = N1

=
(det(2πSw))

−1/2 exp
(
−1

2(x−m1)
⊤S−1

w (x−m1)
)

(det(2πSw))−1/2 exp
(
−1

2(x−m0)⊤S
−1
w (x−m0)

)
+ ...

=
exp

(
−1

2(x−m1)
⊤S−1

w (x−m1)
)

exp
(
−1

2(x+m1)⊤S
−1
w (x+m1)

)
+ exp

(
−1

2(x−m1)⊤S
−1
w (x−m1)

)

18

Using exp
(
−1

2(x−m1)
⊤S−1

w (x−m1)
)
= exp(−1

2x
⊤S−1

w x) exp(m⊤
1 S

−1
w x) exp(−1

2m
⊤
1 S

−1
w m1)

we get

p(y = 1|x) = exp(m⊤
1 S

−1
w x)

exp(m⊤
1 S

−1
w x) + exp(−m⊤

1 S
−1
w x)

=
1

1 + exp(−2m⊤
1 S

−1
w︸ ︷︷ ︸

w⊤

x)

which is known as the logistic regression equation17.

• learn optimal w by the maximum likelihood rule on the posterior and choose w
that maximizes the probability of the training labels under the model

p(y1, ..., yN) =iid
∏

i:yi=1

p(y = 1|xi)
∏

i:yi=0

p(y = 0|xi)

=
∏

i:yi=1

p(y = 1|xi)
∏

i:yi=0

(1− p(y = 1|xi))

=
∏
i

p(y = 1|xi)yi(1− p(y = 1|xi))1−yi

Computing the log-likelihood simplifies this to:

LL = log p(y1, ..., yN) =

N∑
i=1

(
yi log p(y = 1|xi) + (1− yi) log(1− p(y = 1|xi))

)

=
N∑
i=1

(
yi log σ(w

⊤xi) + (1− yi) log(1− σ(w⊤xi))

)
Learning logistic regression model:

ŵ = argmin
w

−LL

compared to LDA learning:

ŵ = argmin
w

N∑
i=1

(w⊤xi − zi)
2

in both cases: decision ŷ = 1 ⇔ w⊤x(+b) ≥ 0 but the optimal w differ, because
the objective functions of the learning algorithm differ18.

• Solution to the LR learning problem: no closed form expression ⇒ iterative algo-
rithm

17remember the logistic sigmoid function: σ(a) = 1
1+exp(−a)

18we will later learn about SVMs which provide again a similar decision rule but optimize yet another
objective function.

19

• properties of logistic function:

– σ(a) = 1
1+e−a = (1 + e−a)−1

– 1− σ(a) = e−a

1+e−a

– d
daσ(a) = σ(a)(1− σ(a))

• we have ∂
∂w − yi log σ(w

⊤xi) =
−yi

σ(w⊤xi)
σ′(w⊤xi)x

⊤
i = −yi(1− σ(w⊤xi))x

⊤
i for the

first term and ∂
∂w−)1− yi) log(1− σ(w⊤xi)) = (1− yi)σ(w

⊤xi)x
⊤
i and finally get

∂

∂w
LR-Objective =

N∑
i=1

(yi − σ(w⊤xi))x
⊤
i = 0

• consider 1D, let xi > 0 with σ(wxi) as the predicted label and yi the desired label.
Then (yi − σ(wxi)) is positive when the prediction is too low and negative when
it is too high.

Solution by stochastic gradient descent

1. choose initial w (e.g. w = 0 ⇒ σ(w⊤x) = 1
2) and learning rate κ

2. for t = 0, ..., tmax or until convergence (also known as outer iterations or “epochs”)

a) order the data randomly (e.g. by calling numpy.random.shuffle() on index
array) 19

b) for all i in shuffled order: w = w + κσ(w⊤xi)xi

c) (optional) update the learning rate: κ = κ t
t+1

7 Seventh Lecture
First Lesson

7.1 Logistic Regression

• Learn the posterior of an LDA-like model

• Stochastic gradient ascent: good for Big Data

• many alternatives:

first order (plain) gradient ascent, conjugate gradient ascent

second order Newton, quasi-Newton (BFGS)

dual, primal-dual

For more on those see the chapter on Support Vector Machines

19IMPORTANT: otherwise you might get biased results

20

• Intuition about Newton: Iterative Re-weighted Least-Squares (IRLS)

alternating optimization: given an initial guess w(0) repeat until convergence:

1. given w(t) determine weights λi for all instances, such that instances near
decision boundary get high λi

20.

λi = σ′(a)
∣∣∣
w(t)⊤xi

2. given λ
(t)
1 compute w(t+1) by a weighted linear least squares fit of the straight

part of σ(a)

• compare to LDA:

– both use the same mathematical for the decision function ŷ = sign(w⊤x+ b)

– but the optimal w differ because we optimize against different objectives:

LDA : argmin
w

∑
i

(w⊤xi − yi)
2

LR : argmin
w

∑
i

yi log σ(w
⊤xi) + (1− yi) log(1− σ(w⊤xi))

– in practice: LDA better when data are (approx) Gaussian, LR otherwise

7.2 Lecture so far

generative discriminative

parametric QDA / LDA Logistic regression

non-parametric Histograms; Density Trees KNN

7.3 Histograms and Density Trees

first look a the 1-dimensional case

• when features X are discrete: histogram trivial: just count the frequency of each
feature. and then for example

p(x|y = k) =

Nlow/N

Nmedium/N

Nhigh/N
20the lecture contains an example graph here
20quick reminder:

generative learn RHS of Bayes formula (likelihood & prior)

discriminative learn LHS of Bayes (posterior) or just learn the decision boundaries (easier: when we
decide ŷ = k, we don’t care if the probability was 0.8 or 0.9

parametric fix the type of distribution (i.e. Gaussian) and learn its parameters (i.e. m, S)

non-parametric don’t fix the distribution

21

• when feature X is continuous: discretize giving us the following:

xl = x0 + l · ∆x︸︷︷︸
bin width

binl = [xl, xl+1)

where x0 ≤ xmin.

– optimal bin height given x0 and ∆x

– minimize∫ ∞

−∞
(p(x)︸︷︷︸
truth

− p̂(x)︸︷︷︸
hist

)2dx =

∫
p(x)2dx− 2

∫
p(x)p̂(x)dx+

∫
p̂(x)2dx

where

p̂(x) =
L−1∑
l=0

pl︸︷︷︸
height of bin l

·1[xl ≤ x ≤ xl+1]

Note that:

1[x ∈ binl] · 1[x ∈ binl′] =

{
1[x ∈ binl], if l = l′

0, if l ̸= l′

Giving us:∫
p(x)p̂(x) =

∫
p(x)

∑
l

pl1[...]dx

=
∑
l

pl

∫
p(x)1[...]dx

=
∑

pl

∫ xl+1

xl

p(x)dx︸ ︷︷ ︸
≈ Nl

N

∫
p̂(x)2dx =

∫ (∑
l

pl1[x ∈ binl]

)2

dx

=

∫ ∑
l

p2l 1[x ∈ binl]dx

=
∑
l

p2l

∫
1[x ∈ binl]dx︸ ︷︷ ︸

∆x

22

so that finally we get:

L(p0, ..., pl−1) := min
p̂

∫
(p(x)− p̂(x))2 dx

= min
p̂

∫
p(x)2dx− 2

∑
l

pl
Nl

N
+
∑
l

p2l∆x

Then

0 =
∂

∂pl
L(p0, ..., pl−1) = −2

Nl

N
+ 2pl∆x

giving us the optimal bin height of p̂l =
Nl

N∆x

optimal ∆x: Second Les-
son∗ if X is Gaussian distributed21: Scott’s rule: ∆x = 3.5σ

3√N

∗ Freedman- Diaconis rule for arbitrary distributions: ∆x = 2IQR(x1,...,xN)
3√N

where IQR is the inter-quartile range. To compute it: sort x1, ..., xN
giving you x[1], ..., x[N]. Then N1/4 =

N
4 and N3/4 =

3N
4 .22 Then

IQR : X[N3/4] −X[N1/4]

∗ Shimazaki / Shinomoto method: use candidate set {∆x1, ...,∆xR} and
build a histogram with each ∆xr, choose the one that minimizes

2mr − vr
(∆xr)2

where mr and vR are the mean and variance of bin height in histogram r

∗ cross-validation: candidate set {∆x1, ...,∆xR}, test data Ml
M : the fraction

of test points in bin l. Choose ∆x that minimizes
∑

l
1

∆xr

(
Nl
N − Ml

M

)
with

Ml
M ≈ ∆xl · p(x ∈ binl)

Now X is d-dimensional, leading to a d-dimensional histogram. Using L bins per dimen-
sion we get for the total number of bins Ltot = Ld.

If we have N < Ld

• then most bins are empty ⇒ no density estimate in these bins.

• most remaining bins have few instances: ⇒ estimate is very inaccurate

⇒ The approach won’t work

23

8 Eight Lecture
First Lesson

Generative Nonparametric Classification

• 1-D case: learn one histogram per class: bin width: ∆x = 2IQR(X)
3√N

, bin height/density:

p̂l =
Nl

N∆x

• d-D case: histograms fail when d ≥ 5 because there are too many empty bins

Solution 1: naive Bayes method assume that the features are independent, given the
class:

p(x1, ..., xd|Y = k) =

d∏
j=1

pj(xj |Y = k)

⇒ we only learn d 1-dimensional likelihoods per class

• pj(xj |y) ∼ N (xj |mj , σ
2
j) ⇒ naive Bayes =̂ QDA with diagonal covariance 23

• pj(xj |y) is a 1-dimensional histogram

• Prediction:

– determine likelihood for each feature and class from the individual his-
tograms pljk

24

– full posterior for class k: p(y = k) =
∏d

j=1 pljk · p(y = k)

– decide ŷ = argmaxk p(y = k|x)
– numerically better: compute

∑d
j=1 log pljk + log p(y = k)

Solution 2: density tree

• idea: determine bins adaptively for the joint distribution of the data

• simple greedy algorithm: recursive subdivision

• Consider one class at a time

1. put all instances into the root node of the tree; place the root node on a
stack

2. while stack not empty:

a) take top node n from stack

b) check termination condition on n

c) if true: turn n into a terminal node (compute p̂l =
Nl
NVl

, where Vl is
the volume of bin l): else: turn n into an interior node

21If you know it’s Gaussian, better fit a Gaussian than a histogram
22each rounded down (but this doesn’t really matter)
23i.e. off-diagonals are all 0
24l = bin, j = feature, k = class

24

– find the optimal split of n’s box in feature space

– Assign n’s instances to two children according to the split

– place the children on the stack

• termination condition: stop splitting when:

1. maximum tree depth is reached (user parameter)

2. minimum number of instances in the root (user parameter)

3. minimum density is reached (user parameter): pl ≥ pmin

4. improvement of the error
∫
(p(x)− p̂(x))2dx is too small

• split selection: restrict to axis-aligned splits ⇒ the split only depends on one
feature and is cheap to compute during prediction.

x ∈ left child : xj ≤ tl x ∈ right child : xj > tl

each interior node stores its feature index j and threshold tl

• greedy exhaustive search for best split: try all possible splits on all features
and choose the best one.

Loss :

∫
(p(x)− p̂(x))2dx is minimized by p̂(x) =

∑
l

pl︸︷︷︸
=Nl/(NVl)

1(x ∈ binl)

=

∫
p(x)2 −

∑
l

p2l Vl ⇒ minimize

for fixed binning.

• contribution of bin l to error reduction: −Lossl = p2l Vl ⇒ maximize

after split−Lossl = p2lleftVlleft+p
2
lright

Vlright =
(
Nlleft

Nl

)2
1

Vlleft
+
(
Nlright

Nl

)2
1

Vlright

⇒ maximize by the split

• simplify: X is 1-d, x ∈ [0, 1] Vl = 1, Vl,left = t, Vl,right = 1 − t,
Nl,left

Nl
=: q,

Nl,right

Nl
= 1− q, t ∈ [0, 1], q ∈ [0, 1]

⇒ Lossl =
q2

t + (1−q)2

(1−t)2
⇒ maximize

Since Losst is convex in t ∈ (0, 1) it has exactly one minimum at t = q but we
want to maximize and so for fixed q and any interval t ∈ [t0, t1] the maximum
at t0 or t1

• Split selection algorithm:

– for each feature j :

∗ sort the Nl instances i according to feature Xij
25.

25X[1]j , ..., X[Nl]j

25

∗ Check all t ∈ {xij ± ε|j fixed, i ∈ [1, ..., Nl]} 2Nl − 2 possible splits

∗ compute the accuracy gain (i.e. −Loss)

– select the best (j, t) among the d(2Nl − 2) possibilities

Remarks

• The same algorithm can be applied as a discriminative model ⇒ decision tree:
known since the 1960s (density trees: 2010). There you need a different gain/loss
criteria

• density trees tend to overfit:

1. improvement: pruning

– for each subtree: estimate the optimism (held out test set) or use analyt-
ical upper bounds

– replace the subtree by a single terminal node when optimism is too big

2. improvement: ensemble learning

– randomize the training algorithm (work on random subsets of instances
and features, when selecting splits)

– train T different trees

– take the average of the T trees

9 Lecture 10/11

9.1 Generative non-parametric models

• naive Bayes method

• density tree

• density tree → density forest (later: random forest)

• kernel density estimation: place one PDF at each instance and take their super-
position;

Problem: how to determine the width of these PDFs?

• Gaussian mixture model ⇒ later: EM algorithm

• nested one - class SVMs

26

9.2 Combine density trees and naive Bayes

• preliminary: consider data standardization

X ′
j =

Xj

σj

where σj represents the standard deviation of Xj . And instead of p(Xj) we get
p̃(X ′

j). As usual∫
p(Xj)dXj = 1

∫
p̃(X ′

j)dX
′
j = 1

giving us the transformation

dX ′
j =

dXj

σj
⇒
∫
p̃(
Xj

σj
)
dXj

σj
= 1

• generalize: uj = fj(xj), where fj : is an arbitrary monotonically increasing trans-
formation, for each of the d features.

We then get with du1...dud = f ′1(x1)dx1....fd(xd)dxd that∫
p̃(u1, ..., ud)du1...dud = 1 =

∫
p̃(f1(x1), ..., fd(xd)) f

′
1(x1)...f

′
d(xd)︸ ︷︷ ︸

Jacobian Factor

dx1...dxd

=

∫
p(x1, ..., xd)dx1...dxd

• data standardization identity26:

p(x1, ..., xd) = (̃f1(x1), ..., fd(xd))f
′
1(x1)...fd(xd)

′

9.3 Rank order standardization

consider feature j, sort instances according to features j → [1], ..., [N] sorted order

uij =
[i]j

N + 1

x1 x2 u1 u2
1 2 6 3/4 2/4
2 5 1 3/4 1/4
3 3 7 2/4 3/4

The lecture contains a plot of the data of the table at this point to clarify. We see that
the relative positioning of the data remains the same, only the absolute position in space
changes (get’s squeezed together)

26We require the equality of the integration formula above to hold for all subsets of the Domain also
and from this follows the equality

27

Continuous case: define cumulative distribution function CDF: F (xj) = Prob(x′ ≤
xj) =

∫ xj

−∞ pj(x
′)dx′, With

uj = Fj(xj)

we get that

duj = F ′
j(xj)dxj = pj(xj)dxj

⇒ p(x1, ..., xd) =

density tree︷ ︸︸ ︷
p̃(u1 = F1(x1), ..., ud = Fd(xd))︸ ︷︷ ︸

Copula density

d 1-dim histograms︷ ︸︸ ︷
p1(x1)....pd(xd)︸ ︷︷ ︸
naive Bayes model

The naive Bayes model contains all of the information that is contained in the individual
features, and the copula contains the interactions between the features.27

9.4 Training algorithm

repeat for each class k = 1, ..., C

1. train a 1-D histogram for each feature

2. map data to the copula using rank order transform

uij =
[i]j

N + 1
assuming 1-based indexing (otherwise use [i]j + 1)

3. train a density tree on ui.

4. Compute the CDF of each histogram from step 1: Fj(xj)

9.5 Prediction

repeat for all classes k = 1, ..., C

1. compute density according to naive Bayes

2. compute u = (F1(x1), ..., Fd(xd))
⊤

3. compute copula density for u and multiply with 1.

4. multiply 3. with p(y = k) (i.e. the prior)

Classify ŷ = k for k that maximizes 4.

27In general one can of course use other methods for these estimations, but we will use density trees and
1-dim histograms in the exercise

28

9.6 Generate new instances of class k

1. traverse down the copula density tree go left with prob p, right with prob q

pL = pleft childVleft child pR = pright childVright child

p =
pL

pL + pR
q =

pR
pL + pR

2. In the leaf node: sample the position uniformly at random from the leaf node
region

3. Map the resulting u to x according xj = F−1
j (uj)

10 Lecture 12/11

10.1 Regression

The task is to learn a function y = f(x), mapping Rd → Rd′ (i.e. from feature space to
response space, and in our case d′ ≡ 1). (in contrast: classification y ∈ N, {0, ..., C−1}),
from training data {(Xi, Yi)}i=1,...,N assumed iid. Matrix notation28 X ∈ RN×d

We have the following order:

What is the Function class f(x)?

linear What is the noise?

other

simple parametric noise model (e.g. Poisson) 29

Yes ML-estimator

Outliers

Robust regression

Outlier detection and elimination

additive Gaussian Is only Y noisy?

yes Is the linear system underdetermined? (d > N or d ≤ N and ill condi-
tioned)

no Do all Yi have the same noise?

yes ordinary least squares

no weighted least squares

yes regularized / constrained least squares

no (X and Y are noisy) total least squares

28instances = rows
29somewhere in this part of the tree: transform to Gaussian noise (Anscombe transform)

29

non-linear What is the noise?

additive Gauss

non-linear least squares Levenberg-Marquardt-Algorithm

other

many non-linear regression methods regression forest/tree

10.2 Linear Regression

• model: Y = Xβ︸︷︷︸
lin model

+ε (where ε is additive Gaussian noise); X is noise-free, Y is

noisy.

• Yi = Xi · β + εi, εi ∼ N (0, σ2)

• task: determine β that maximizes the likelihood of the training data (ML principle)

ri := Yi −Xiβ called the residual for ith training instance

choose β such that ri = εi ∼ N (0, σ2)

p(training data) =

N∏
i=1

ν exp

(
−(Yi −Xiβ)

2

2σ2

)
we are looking at the negative log likelihood:

− log p(training data) =
N∑
i=1

(Yi −Xiβ)
2

2σ2
+N log ν

• Least Squares objective:

min
β

N∑
i=1

(Yi −Xiβ)
2 =

N∑
i=1

r2i invented by Gauss30

• example: fit a line in 2D, model: y = ax+ b,

[The lecture contains an example plot here]

min
a,b

∑
i

(yi − axi − b)2 = Loss((xi, yi)|a, b)

∂Loss

∂b
= −2

∑
i

(yi − axi − b) = 0

⇒
∑

yi − a
∑

xi =
∑

b = nb

⇒ b = ȳ − ax̄

30

Therefore the data centroid is alway on the regression line/hyper plane31 ⇒ cen-
tralize the data y → y − ȳ, X → X − X̄ ⇒ b = 0.

Alternatively: augment the matrix X: X → [X, 1]

• arbitrary dimensions: matrix notation:

min
β

||Xβ − Y ||22 = min
β

(Xβ − y)⊤(Xβ − y)︸ ︷︷ ︸
Loss

∂L

∂β
= 2X⊤(Xβ − y) = 0

Giving us the so called normal equation(s)32

X⊤Xβ = X⊤y

X⊤X is called the scatter matrix and (S = 1
NX

⊤X is the covariance, when the
data are centralized). Centralization uses the magnitude of the elements of X⊤X
⇒ numerically much better

• formal solution: β̂(X⊤X)−1X⊤y where (X⊤X)−1X⊤ =: X† is known as the
Moore-Penrose pseudo-inverse (generalization of inverse to rectangular matrices
X ∈ N × d,N ≥ d, full rank)

• Solution 1: Let R⊤R = X⊤X be the Cholesky factorization of X⊤X where R is
an upper triangular matrix .

Theorem:

– Every positive definite symmetric(PDS) matrix has a Cholesky factorization

– X⊤X is PDS, when X is full rank

X⊤Xβ = X⊤y

R⊤Rβ = X⊤y set z = Rβ

R⊤z = X⊤y = ỹ solve for z by forward substitution33

And finally solve z = Rβ by backward substitution

31in higher dimensions
32since the solution for β is normal on it
33solving this then becomes very easy. In the first row you have z1 = ỹi/R11, in the second z2 =

(ỹ2 −R12z1)/R22 and so on

31

Brief interlude on how to compute X⊤X efficiently

How to compute X⊤X without ever creating X.

• naive algorithm when X exists: matrix multiplication

for k = 1 ... d

for l = 1 ... d

Q_{kl} = 0

for i = 1 ... N

Q_{kl} += X_{ik}*X_{il}

• improved algorithm: access X one row at a time

Q_{kl} = 0 #for all k and l

for i = 1 ... N

for k = 1 ... d

for l = 1 ... d

Q_{kl} += X_{ik}*X_{il}

• Solution 2; Singular value decomposition (SVD) of X34

X = V ΛU⊤

where Λ is diagonal and N × d, V is orthogonal and N ×N and U is orthogonal
and d× d

X⊤ = UΛ⊤V ⊤

X⊤X = UΛ⊤V ⊤V ΛU⊤ = UΛ2U⊤

⇒ (X⊤X)−1 = U
(
Λ2
)−1

U⊤

⇒ β = (X⊤X)−1X⊤y = UΛ−2U⊤UΛ⊤V ⊤

= UΛ−1V ⊤y

11 Lecture 19/11

11.1 Ordinary Least Squares

• minβ ||Xβ−Y ||22 = (Xβ−Y)⊤(Xβ−Y) = Loss(Xβ−Y) with the formal solution
of β = (X⊤X)−1X⊤Y aka the pseudo-inverse

• Solution 1. Cholesky: X⊤X = R⊤R, where R is upper triangular

34this is the numerically most stable algorithm, and also sometimes works when the original X is not of
full rank

32

• Solution 2. SVD (singular value decomposition) X = UΛV ⊤ with the solution of
β = V Λ−1U⊤Y

• Advantages of 1.: simple, matrix X⊤X (d × d) can be constructed without ever
creating X (N × d)

• Advantages of 2.: numerically most stable method.

Reason: condition umber of matrix X : κ(X) = ||X||||X†|| = maxj(|λj |)
minj(|λj |) . Rule of

thumb for the relative precision of solution of a linear system.

ε = machine precision =

{
10−7 float32

10−16 float 64 (double)

rel error(β) ≈ κε, e.g. if κ(X) = 107 then κε = 1 in float 32 and = 10−9 in float
64.

κ(X⊤X) =
λ2max

λ2min

= κ(X)2(= 1014 in the example

κ(X) is what we deal with in the case of SVD, whereas in Cholesky we deal with
κ(X⊤X)35.

• Solution 3.: compromise between 1. and 2.: QR-decomposition:36 X = Q · R,
where Q is N × N orthogonal, and R is N × d upper triangular. We again only
deal with κ(X).

β = (X⊤X)−1X⊤Y = (R⊤Q⊤QR)−1R⊤Q⊤Y = R−1(R−TR⊤Q⊤Y)

= R−1Q⊤Y

Solve Rβ = Q⊤Y (again by backward substitution)

Algorithm sketch: Construct R one column at a time

– initialize R(0) = X, Z(0) = Y

– for j = 1, ..., d:

∗ construct an elementary orthogonal matrix Q(j) via Householder trans-
form such that R(j) = (Q(j))⊤R(j−1) makes column j of R(j−1) triangular

(i.e. R
(j)
ij = 0 ∀i > j).

∗ R(j) = (Q(j))⊤R(j−1)

∗ Z(j) = (Q(j))⊤Z(j−1)

35the downside being, that SVD is more expensive
36today the standard

33

– solve R(d)β = Z(d) via backward substitution.

• formally: Q = Q(d)·Q(d−1)·...·Q(1), R = R(d)(=
(
Q(1)·...·Q(d) (Q(d))⊤ · · · (Q(1))⊤X︸ ︷︷ ︸

R(1)︸ ︷︷ ︸
R(d)

)

and Z(d) = (Q(d))⊤ · · · (Q(1))⊤Y︸ ︷︷ ︸
Z(1)

• Solution 4. when matrix X is too big to be constructed, and X⊤X is “too dan-
gerous”: LSQR algorithm (Paige and Saunders, 1982)

– variant of conjugate gradient algorithm, adapted to least squares (makes it
numerically more stable)

∗ big matrices usually have special structure (e.g. sparse, stored on hard
disk in a special format, computed on the fly,...)

∗ never access X directly, but only via matrix-vector products Xu or/and
X⊤v ⇒ user has to provide efficient subroutines (“functor”) for Xu
and/or X⊤v

Algorithm sketch:

– for t = 1, ..., tmax

∗ construct decomposition X = U (t)B(t)(V (t))⊤, U (t) is N × t orthogonal,
V (t) is t × d orthogonal and B(t) is t × t upper bidiagonal by extending
U (t−1), B(t−1), V (t−1) with a new row/column

∗ update the RHS Z(t) and solution β(t) accordingly.

∗ trick: never store any U (t), B(t), V (t) entirely. Only columns / rows (t−1)
and t are needed in each iteration

∗ in theory: convergence after t = d in practice: terminate when residual
small enough or negligible improvement

∗ other solutions: Gauss-Seidel iterations, gradient descent, stochastic gra-
dient descent (active area of research, make this fast for very big data)

Example

Computed tomography37. Note: There is a plot here detailing the working of tomography

IY1 = I0 exp

(∫
ray
µ(x, y)dxdy

)
where I0 is the source intensity, µ(x, y) the absorption coefficient at x, y, leading to

Y = − log
I

I0
=

∫
ray
µ(x, y)dxdy

37will probably be the next exercise

34

• goal: find µ(x, y) from many directions

• discretize the problem

[there are a lot of plots in this example]

flatten the µ matrix βj ↔ µ(k, l) j = k +K · l + 1, Yi ↔ Z
(t)
i′ , i = i′ + tu

• discretize integral: take rayi′,t ray detected by Zi′ at angle t

Z
(t)
i′ =

∫
rayi′,t

µ(x, y)dxdy =
∑
k,l

contr of pixel (k,l) to the absorption along rayi′,t

• model: contribution of pixel k, l is a simple function of the distance between the

center of pixel and ray: e.g. triangle function wk,l =
∧
(θ) =

{
1− |θ|, |θ| ≤ 1

0, else

X = (Xij) Xij is the influence of pixel j(= k + Kl + 1) on sensor element i =
i′ + nt+ 1

Yi =
∫
µ(x, y)dxdy ≈

∑
j Xijβj

12 Lecture 24/11

The goal of the next couple of lectures is to talk about different variations of OLS38.

12.1 Weighted least Squares

Yi = Xiβ
∗ + εi, εi ∈ N (0, σ2i)

• simplest case: σi are known (but different) Yi = (Ŷi + εi) e.g. by error analysis of
the measurement

• Optimization problem:

min
β

∑
i

expected value σ2
i︷ ︸︸ ︷

(Yi −Xiβ)
2

σ2i︸ ︷︷ ︸
r2i
σ2
i

has expected value 1

• matrix notation: S = diag(σ21, ..., σ
2
n) gives us the following optimization problem

min
β

(Y −Xβ)⊤S−1(Y −Xβ) = min
β

||Y −Xβ||2S

⇒ β̂ = (X⊤S−1X)−1X⊤S−1Y︸ ︷︷ ︸
weighted pseudo-inverse

38which was minβ ||Y −Xβ||22

35

• in practice: replace X̃i =
Xi
σi

and Ỹi =
Yi
σi

and solve

min
β

(Ỹ − X̃β)2

• this also works if the error between different Yi’s are correlated. ⇒ S is a spd39

matrix. ⇒ S−1 exists.

– Cholesky factorization S−1 = R⊤R

X̃ = RX Ỹ = RY ⇒ OLS in X̃ and Ỹ

• If σi are unknown: we must make assumptions about the structure of S

– most common assumption: S is diagonal

– Iteratively Re-weighted Least-Squares(IRLS) algorithm

∗ initialize σ
(0)
i = 1

∗ for t = 1, ..., tmax (or until convergence)

· solve β(t) = argminβ
∑

i
(Yi−Xiβ)

2

(σ
(t−1)
i)2

· compute residuals: r
(t)
i = Yi −Xiβ

(t)

· set σ
(t)
i = σ

(t−1)
i r

(t)
i

– theory: asymptotically tmax = 2 is sufficient for N → ∞
– for finite N , more iterations are usually beneficial

12.2 Total Least Squares (TLS)

OLS: Yi = Xiβ
∗ + εi, Ŷi = Yi − εi

TLS both Y and X are noisy

OLS: alternative (but equivalent) formulation:

min
β,ei

∑
i

e2i , s.t Yi + ei = Xiβ

TLS:

min
β,ei,γi

||[γe]||22 s.t. Yi + ei = (Xi + γi)β

• solution:

– X̃, Ỹ centralization of X and Y

– form concatenated matrix [X̃ Ỹ] N × (d+ 1)

39symmetric, positive definite

36

– compute SVD:

[X̃ Ỹ] = UΛV ⊤

–

min
β,e,γ

||[γe]||2 = min
j
λ2j

i.e. the smalles singular value

– β̂ can be constructed from the singular vectors. Let Vj be the column of V

that corresponds to the smallest SV Vj = [z α]⊤ ⇒ β̂ = − z
α

– application 2D line filtering with orthogonal coordinations:

S = [X̃ Ỹ]⊤[X̃ Ỹ] combined scatter matrix40

⇒ SVD creates an approximating ellipse. SV |λ1| and |λ2| are the radii of
th ellipse V1 and V2 ar the axis

12.3 Regularized Least Squares

• when system is underdetermined(d >> N) or has bad condition (κ(X) >> 1)
OLS doesn’t work ⇒ we need additional information

• Bias-Variance-Trade-Off

– Define the (unknown) data distribution (Xi, Yi) ∼ p(X,Y)

– Let TN be the set of all training sets of size N

p(TN) = (p(X,Y))N due to iid assumption

• β̂ is an estimate of β∗ (the truth) from T ′
N ∈ TN ETN

[β̂N] average of β̂N over all
training sets of size N

MSE = ETN
[(β̂N − β∗)2]

= ETN
[(β̂N − ETN

[β̂N])2]︸ ︷︷ ︸
variance of β̂N

+ETN
[(E[β̂N]− β∗)2]︸ ︷︷ ︸

bias

variance “how much does β̂ differ when we get several training sets?”

bias “Does our algorithm estimate the truth on average?

• application to OLS:

Eβ̂ = ... = β̂

40known in physics as the tensor of inertia)

37

• Since the bias is zero we get that OLS is unbiased

• variance (co-variance matrix):

E[(β̂ − Eβ̂)(β̂ − Eβ̂)⊤] = E[(β̂ − β∗)(β̂ − β∗)⊤]

We have that

β̂ − β∗ = (X⊤X)−1X⊤(Y − Y + ε) = (X⊤X)−1X⊤ε

giving us

E
[
(β̂ − β∗)(β̂ − β∗)⊤

]
= E

[
(X⊤X)−1X⊤εε⊤X(X⊤X)−1

]
= (X⊤X)−1σ2

as the covariance of the OLS estimate

• consequence: if X has bad condition κ(X) >> 1, (X⊤X)−1 explodes ⇒ the OLS
variance becomes huge

• what happens in detail?

– simple case: X has two almost equal columns (up to scaling factors) (=almost
linearly dependent), say columns 1 and 2

⇒ X1β1+X2β2 ≈ 0, but |β1| >> 1 and |β2| >> 1 but in an independent test
set, this delicate cancellation doesn’t work.

⇒ the huge coefficients β1 and β2 have catastrophic effects

– usually, more than two columns are involved, but the cancellation effect is the
same

⇒ we must penalize very big coefficients. The estimate of β̂ is then no longer
unbiased, but a small increase in bias may cause a big decrease in variance

⇒ The totale MSE error decreases (which is known as the Bias-Variance
Tradeoff)41

12.4 Ridge Regression

IMPORTANT: STANDARDIZE DATA BEFOREHAND

min
β

||Y −Xβ||22 s.t.||β||22 ≤ t

• penalization only has an effect if t < ||̂||22, where β̂ is the solution of the OLS
problem

41the lecture contains the usual bias variance plot

38

• if penalization is active it forces |β1| to be small (shrinking) and |βj1 | ≈ |βj2 |
(equalization)

• equivalent optimization problem using Lagrange multiplier τ > 0:

min
β

||Y −Xβ||22 + τ ||β||22

giving us β̂ = (X⊤X + τ1)−1X⊤Y

• solution 1: QR decomposition X̃ = [X τ1/21]⊤, Ỹ = [Y 0]⊤ X̃ = QR

(Ỹ − X̃β)⊤(Ỹ − X̃β) = (Y −Xβ)⊤(Y −Xβ) + τβ⊤β

X̃ = QR⇒ Rβ̂ = QỸ solve by backward substitution

• solution 2: via SVD: X = UΛV T after some computations we get

β̂ = V (Λ2 + τ1)−1ΛUY

12.5 Lasso regression (“least absolute shrinkage and selection operator”)

IMPORTANT: STANDARDIZE DATA BEFOREHAND

• when X is underdetermined, features are highly redundant ⇒ select the important
features

• ridge regression shrinks coefficients to small values, but usually not to zero. ⇒
meant to solve feature selection problem

min
β

||Y −Xβ||22 such that ||β||0 ≤ d′ < d

with ||β||0 =
∑

j 1[βj ̸= 0], unfortunately, this is NP hard

• it turnes out, that L1 regularization is almost as good

min
β

||Y −Xβ||22 such that ||β||1 ≤ t

LASSO ist still a convex optimization problem ⇒ unique solution + efficent algorithms

• Intuition: why does LASSO select variables?

– 1-D case: Loss is a parabola 42

– 2-D case: again a plot

42there is a plot here

39

12.6 Orthogonal matching pursuit

Greedy approximation for L0 norm.

• maintain an active set Bs of coefficients ̸= 0

• initialize Bs = ∅, add one index per iteration, r(0) = Y

• while s ≤ smax:

– find column js ̸= Bs−1 of X that has maximum correlation with the residual
r(s−1)

– add js to Bs−1: Bs = Bs−1 ∪ {js}
– solve the OLS problem with only the columns in BS to get β̂(s)

– compute r(s) = Y −Xβ(s)

13 Lecture 26/11

• Orthogonal matching pursuit using QR decomposition

• goal: find the d′ most important elements of β ∈ Rd (d > d′) and set all other
elements to zero (“sparse regression”)

• principle:

– maintain an active set Bs = {j : β̂(s) ̸= 0} of non-zero indices

– add one index to Bs per iteration, until #Bs = d′

• initialize Bs = ∅, r(0) = Y,X(0) = X

• for s = 1, ..., d′

– find js ≥ s, the inde of the column X(s−1) with highest correlation to the

residual r(s−1), js = argmaxj≥s

∣∣∣(r(s−1)
)⊤ −X

(s−1)
j

∣∣∣
– swap the columns s and js of X(s−1) ⇒ X ′(s)

– perform one iteration of QR-decomposition on X ′(s) ⇒ X(s)

∗ make column X
′(s)
s triangular using Householder transformation and up-

date Y (s)

∗ compute β(s) (Least-squares solution for Bs) by backward substitution
on R(s)β = Y (s)43

∗ compute residual r(s) = Y −Xβ(s)

– undo the column permutations on β(d
′) and return β̂

43R(s) is the upper left s× s submatrix of X(s) (=triangular part)

40

• OMP gives an approximate solution44 for minβ ||Y −Xβ||22 s.t. ||β||0 = d′

• LASSO problem can be solved exactly minβ ||Y − Xβ||22 s.t. ||β||1 ≤ t by Least
Angle Regression (LARS), a variation of OMP

• when we express β̂ as a function of t, we get the solution path β̂(t)

– β̂(t) is a piecewise linear function: it consists of “knots” β̂(s) = β̂(t(s)) where
the path bends, and linear segments in between (β̂(t) = αβ̂(s)+(1−α)β̂(s+1)

for all t = αt(s) + (1− α)t(s+1))

– at each t(s) the active set Bs changes (variable enters or leaves45)

– init B(0) = ∅, X(0) = X,Y (0) = Y = r(0)

– for s = 1, ..., d(= #Bs)︸ ︷︷ ︸
OLS-Solution = end of solution path

∗ find j′′s ≥ s that has maximum correlation with r(s−1)

∗ find j′s < s where β
(s−1)
j′ and β̂

(s)
j′ and the corresponding α is biggest

∗ set js to j′s or j′′s , whatever event occurs first on path

· if js = j′s (a variable leaves Bs), create X
′(s) by swapping js and k

(= #Bs−1, aka. last active column) and remove the new k from Bs

and repair triangular shape of the first (k − 1) columns

· otherwise (column js enters Bs): swap js and k+1 and repair trian-
gular part (first (k + 1) columns of X)

∗ compute current solution

– return the untangled β̂(s) (after inverse permutation)

• application: topic discovery

• rows of X correspond to words (“trees”, “leaf”, “deer”, “key”), columns of X
correspond to topics (“biology”, “algorithms”)

• Xij : probability that word i occurs in a document about topic j (exclusively)

• Y is a particular document of interest

• solve minβ ||Y −Xβ||22, such that ||β||0 ≤ tmax (max number of topics allowed per
document), ||β||1 ≤ t

• perform non-negative OMP (i.e. only positive coefficients are allowed)

• β̂J ̸= 0 means Y talks about topic j

44due to it’s greedy nature it is not exact. This could only be achieved by checking all combinations →
NP-hard

45the latter was not possible in OMP

41

• for big data: use iterative algorithms (similar to CG instead of LARS or OMP)

• variations:

– non-negative LASSO (β̂ ≥ 0)

– elastic net: combination of ridge regression and LASSO min ||....||22+τ1||β||22+
τ2||β||1

– group LASSO: penalize groups of variables together

• dictionary learning: also learn the matrix X from training data ⇒ Machine Learn-
ing II

13.1 Non-linear Regression

• Task: find f s.t. Y = f(X) X ∈ Rd, Y ∈ R but f is non-linear

• given training data {(Xi, Yi}Ni=1

• non-linear least squares

min
f∈H

||Y − f(X)||22

– parametric approach: function type of f is fixed, only some free parameters
to be determined: f(X,β)

⇒ Levenberg-Marquardt algorithm

– non-parametric: e.g. f is piecewise constant ⇒ regression tree / forest

• solve non-linear regression by means of linear least squares:

– map X into an augmented feature space X̃ (new columns from non-linear
functions of the old columns)

– kernel trick

13.1.1 Levenberg-Marquardt-Algorithm

• f(x) is parametric: f(X,β), model: Y = f(X,β∗) + ε, ε ∼ N (0, σ2)

• linearize f(X,β) by 1st order Taylor expansion in β

f(X,β0 +∆) ≈ f(X,β0) +
∂f(X,β)

∂β

∣∣∣∣
β0

∆

min
β

||Y − f(X;β)||22 ⇔min
∆

||Y − f(X,β0)︸ ︷︷ ︸
Ỹ

− ∂f

∂β

∣∣∣∣
β0

∆||22 iff ||β0 − β̂|| “small”

=min
∆

||Ỹ − X̃∆||22 OLS problem

42

• Gauss-Newton algorithm

– define initial guess β(0)

– repeat until convergence (ort = 1,, tmax)

min
∆

N∑
i=1

(
Ỹ

(t−1)
i − X̃

(t−1)
i ∆

)2
Ỹ

(t−1)
i = Ỹi − f(Xi, β

(t−1)) X̃
(t−1)
i =

∂f(X,β)

∂β)

∣∣∣∣
X=Xi,β=β(t−1)

– solve by normal equations

(X̃⊤X̃)∆ = X̃⊤Ỹ

– β(t) = β(t−1) +∆

14 Lecture 01/12

14.1 parametric non-linear least-squares

• model: Y = f(X,β∗) + ε parametric function , where β∗ are the true parameters

• task: β̂ = argminβ
∑

i(Yi − f(Xi, β))
2

• Gauss-Newton iteration: choose initial guess β(0); update β(t) = β(t−1)+(X̃⊤X̃)−1X̃Ỹ ,

Ỹ =
[
Yi − f(Xi, β

(t−1))
]
, X =

[
∂(Xi,β

(t−1)

∂β

]
(aka. the Jacobian)

fast, but may not converge

• alternative: gradient descent:

∂

∂β
(Y − f(X,β))2 = −2

∂f(x, β)

∂β︸ ︷︷ ︸
X̃

(Y − f(x, β))︸ ︷︷ ︸
Ỹ

Update: β(t) = β(t−1) + X̃⊤Ỹ

slow, but converges to the nearest local minimum

• Levenberg’s idea: combine the advantages of GN and GD

β(t) = β(t−1) + (X̃⊤X̃ + τ1)−1X̃Ỹ (ridge regression)

• effect: if τ small: almost GN ⇒ fast

if τ big: X̃⊤X̃ doesn’t matter - almost GD ⇒ robust

• adaptive damping (τ damping parameter)

43

– init: β(0), τ = τ0(= 0, 1), κ(=
√
2) damping update

– iterate:

∗ perform one update step

∗ compute residual

∗ if residual decreased:

· accept update

· set τ = τ/κ (less damping)

∗ otherwise

· reject update

· τ = κτ (retry with more damping)

• Marquardt’s idea:

– in normal ridge regression, we standardize X (to column-wise unit norm)
beforehand to ensure fair penalization

– doesn’t work here: X̃ must be the Jacobian

⇒ we must adjust τ for each feature using diag(X̃⊤X̃)

• Levenberg-Marquardt-update:

β(t) = β(t−1) + (X̃⊤X̃ + diag(X̃⊤X̃)τ)−1X̃⊤Ỹ

46

14.2 Non-parametric non-linear least-squares

• regression tree (like density tree, but for regression)

model: piecewise constant approximation

f̂(x) =
L∑
l=1

fl1(x ∈ binl)

task: when binning is given:

min
fl

E[(f(x)− f̂(x))2] =

∫
(f(x)− f̂(x))2p(x)dx = Loss

Loss = c− 2
∑
l

fl

∫
x∈binl

f(x)p(x)dx+
∑
l

f2l

∫
x∈binl

p(x)dx

∂Loss

∂fl
= −2

∫
x∈binl

f(x)p(x)dx+ 2fl

∫
x∈binl

p(x)dx =! 0

fl =

∫
f(x)p(x)dx∫
p(x)dx

≈ 1

Nl

∑
i:Xi∈binl

f(Xi)

46See the CERES library in C++, for more on this topic

44

• algorithm:

– put all instances in a root node and place root node on a stack

– while stack not empty:

∗ take top node from stack

∗ if node satisfies termination criterion:

· compute fl and create leaf node

∗ otherwise: determine optimal split and put the two child nodes on stack

– split selection: exhaustive search over all axes and all split points to finde the
split that maximally reduces loss

∗ consider one node:

loss(binl) =
∑

i:Xi∈binl

(fl − Yi)
2

∗ after split:

loss(left) =
∑
i∈left

(fleft − Yi)
2 loss(right) = ...

⇒ choose split that minimizes loss(left) + loss(right)

∗ termination: stop when Nl < Nmin

– important: avoid overfitting

– traditional: pruning:

∗ estimate optimism of each subtree

∗ replace with a single node if too big

– better: ensemble of regression trees

∗ train T trees with randomization (each tree uses a random subset of the
training data, each split optimization only considers a random subset of
the possible splits)

∗ return the average response of all trees

∗ use a bootstrap sample for the subset of the data (explained later)

14.3 Reducing non-linear regression to linear regression

• idea: transform the data X into new variables X̃ where linear regression works
using a non-linear mapping (“change of variables”)

X̃j = ϕj(X)

45

• example: least squares fit of a circle 47

task:

min
c,r

N∑
i=1

(
√

(Xi − c)2 − r)2

this non-linear problem can be solved using Levenberg-Marquardt

• change of variables:

– define an “algebraic loss”

min
c,r

∑
i

((xi − l)2 − r2)2 = Lossa

(xi − c)2 − r2 = x2i − 2xic+ c2 − r2

define X̃ = [X1] Ỹ = ||xi||22 β = [2c1, 2c2, r
2 − ||c||22]

– ∑
i

((Xi − c)2 − r2)2 =
∑
i

(Ỹ − X̃iβ)
2

– solve for β using OLS

– compute solution: c1 = β1/2, c2 = β̂2/2, r =
√
c21 + c22 + β̂3

– better numerics after data centering.

• advantage. better and fast, robust against outliers

• disadvantage: changes error metric; doesn’t work well for incomplete circles

15 Lecture 3/12

Reduce non-linear regression to linear least squares

• general idea: non-linear mapping X 7→ X̃ (d̃ dimensional feature space, in general
d̃ > d)

• solve: minβ(Ỹ − X̃β)2

• traditionally: hand-crafted feature space X̃, Ỹ taylored to the application by an
expert

• machine learning: use generic transformations that work in many applications

• caveat: if d̃ is big, we may overfit ⇒ use ridge regression
47the lecture contains a plot here

46

Dual optimization problem of ridge regression

RR: minβ β̃
2 + (Y −Xβ)2 ⇔ minβ,ξi τβ

2 +
∑

i ξ
2
i such that Yi −Xiβ = ξi ∀i

(Primal) Loss(β, ξi) = τβ2 +
∑
i

ξ2i

Lagrangian(β, ξi, αi) = τβ2 +
∑
i

ξ2i + 2τ
∑
i

αi(Yi −Xiβ − ξi)

Dual Loss(αi) = min
β,ξi

Lagrangian(β, ξi, αi)

• important property of Dual Loss:

– Let β̂, ξ̂i be the optimal primal solutions Loss(β̂, ξ̂i) = min

– for all α: Lagrangian(β̂, ξ̂i, αi) = Loss(β̂, ξ̂i)

⇒ Dual Loss (αi) ≤ Loss(β̂, ξ̂i)

– any dual solution provides a lower bound for Loss(β̂, ξ̂i)

⇒ best possible lower bound: maxαi Dual Loss(αi) ⇒ α̂i

here: Loss(β̂, ξi) = DualLoss(α̂i) ⇒ exercise

∂Lagrangian

∂β
= 2τβ − 2τ

∑
i

αiXi = 0

β =
∑
i

αiXi

∂Lagrangian

∂ξi
= 2ξi − 2ταi = 0

ξi = ταi

DualLoss(αi) = −τ
∑
i1

∑
i2

αi1αi2Xi1X
⊤
i2 − τ2

∑
i

α2
i + 2τ

∑
i

αiXi

DualLoss(αi) = τ
[
−α⊤(XX⊤ + τ1)α+ 2α⊤Y

]
• XX⊤: Gram matrix, kernel matrix, Ki1,i2 = Xi1X

⊤
i2
: skalar product between

instances i1, i2
48

• dual solution:

∂DualLoss(α

∂α
= −τ (2(K + τ1)α+ 2Y) = 0

α̂ = (K + τ1)−1Y

48compare to normal equations of primal X⊤X︸ ︷︷ ︸
scatter matrix

β = X⊤Y ,

47

• prediction for new instance Xnew:

β =
∑
i

αiXi = X⊤α

Ynew = Xnewβ = XnewX
⊤α

k = XnewX
⊤49

Ynew = Y ⊤(K + τ1)−1︸ ︷︷ ︸
precomputed

k⊤

• compute k for each new instance and predict

• key observation: Let X̃ = φ(X),, K̃ = X̃X̃⊤

– for certain mappings φ, we can compute K̃ without ever computing X̃ (like-
wise for k̃)

⇒ we can solve the dual problem without computing X̃ “kernel
trick”

• example: d = 2, Xi = [Xi1, Xi2]; d̃ = 5, X̃i = [X2
i1, X

2
i2,

√
2Xi1Xi2,

√
2Xi1,

√
2Xi2, 1]

50

Ki1,i2 = X̃i1X̃
⊤
i2 = ...

= (Xi1X
⊤
i2 + 1)2

compute kernel matrix directly from the old features

Theorem(Mercer)

Let K(X,X) : Rd ×Rd → R. K(X,X) is a kernel function iff the kernel matrix

[Ki1i2 = K(Xi1 , Xi2)]

is positive semidefinite symmetric for all possible training sets {xi}Ni=1(∀N)

• Kernel ridge regression:

– choose a Mercer kernel

– compute a kernel matrix

– solve the dual problem ⇒ α̂

– predict: compute k, return α̂k⊤

• popular kernel functions:

– polynomial kernels : K(Xi1 , Xi2) = (Xi1X
⊤
i2
+ 1)p

49effort: O(ND)
50there follows a long computation which won’t be repeated here...

48

– Gaussian kernel: K(Xi1 , Xi2) = e
||Xi1

−Xi2
||2

2h2 (with h as the bandwidth pa-
rameter) [=ε-nearest-neighbor interpolation] ⇒ exercise]

• advantage: can handle arbitrary nonlinear problems

• disadvantages:

– prediction may be expensive O(Nd)

– choose τ (and h) carefully to avoid overfitting

• simplified version: kernel regression

f̂ =

∑
i Yiki∑
i ki

(
αi =

Yi∑
i ki

)
=
∑
i

wiki

(
wi =

ki∑
i ki

weights

)
= weighted average over neighboring training points

“neighboring”: large value of k(Xnew, Xi) = ki

• speed-up for Gaussian kernel

– easy version: find the Xi that are near Xnew, via quick (approximate) nearest
neighbor search

– better version: Fast Gaussian Transform: approximate the combined influ-
ence of the far neighbors by mean field approximation

Robust Regression

• robust: regression still works, when the assumptions are not exactly fulfilled

• two important violations:

– heavier tails of the error distribution, especially outliers

– the data contain several instances of the model (e.g. inliers of one model are
the outliers of the others)

• two main approaches:

– outlier detections & removal, followed by normal regression, followed by nor-
mal regression (dangerous, e.g. ozone hole)

– robust regression: outliers are implicitly down-weighted by the algorithm in
a controlled way

49

16 Lecture 8/12

RANSAC (Random sample consensus)

• very popular in image analysis

– when inlayer fraction is small (< 50%, even < 10%)

– when data contains sever al model instances

– when the model has few free parameters, but has many local optima.

• simple algorithm: N data points, d free parameters

– suppose, we need at least D data points to fit a model (e.g. lin 2D: D = 2,
circle in 2d: D = 3, plain in Rd: D = d, stitching of 2 images (fundamental
matrix) D = 8)

– define “inlier threshold” κ.

Xi is inlier ⇔ d(Xi, f) ≤ κ

(for linear models. κ = 3σ)51

• algorithm:

– repeat T times:

∗ sample D points uniformly at random

∗ fit f̂ using these points

∗ find inlier set {Xi : d(Xi, f̂) ≤ κ}
– return biggest inlier set and corresponding f̂

• optional:

– use normal fit from all inliers

– remove inliers from data set & repeat: find more model instances

• How big should T (number of iterations) be?

– assumption: when we pick D inliers, we get a good model (not true, but
deviations in both directions)

– define γ = Nin
N inlier fraction

p(choose D inliers) = γD

p(choose at least one outlier in D picks) = 1− γD = p(bad model)

p(only bad models in T iterations) = (1− γD)⊤

= 1− p(at least one good model in T iterations)

51σ std deviation of true inliers (estimated in pilot experiment)

50

– define α: probability of RANSAC success (user defined)

⇒ (1− γD)⊤ = 1− α

T ≥ log(1− α)

log(1− γD)

– examples52:

D/r 90% 50% 30%

2 3 17 49
3 4 35 169
8 9 1172 70128

Basics of Robust Regression

• first consider the simplest model: define “center “ of data (1-D)

traditional estimator: mean x = 1
N

∑
iXi

• define simple contaminated distribution: Gaussian mixture model53

p(X|ε, σ2, τ2) = (1− ε)N (0, σ2) + σN (0, τ2), τ2 ≥ σ2

var(Mean) =
σ2

N

(
1− ε+ ε

τ2

σ2

)
• traditional robust estimator: median

Med(x) = t s.t. #{X1 < t} = #{Xi > t}

(not unique when N is even: t =
XN/2+XN/2+1

2)

•

var(Median) =
sigma2

N

π

2(1− ε+ εστ)
2

• numbers: uncontaminated (ε = 0 or τ2 = σ2)

var(median)

var(mean)
=
π

2
= 157%

⇒ median of a Gaussian needs 57% mode data for same accuracy as mean

contaminated: ε = 5% : vmed
vmean

= 1 (τ = 4σ), 0.29(tau = 10σ),

ε = 10% : vmed
vmean

= 1 (τ = 3σ), 0.17(τ = 10σ)

• generalize in terms of loss functions ρ

52probably calculated with α = 99%
53ε is called the mixture coefficient

51

– estimation task: mint
∑

i ρ(Xi, t) ⇔
∑
ψ(Xi, t) =

! 0

where t is the estimate for “outer” and ψ(Xi, t) =
∂
∂tρ(Xi, t) as the “influence

function”

– typical choice for ρ: ML estimator ρ = − log(p(X1, ..., XN |t)

p(x) ∼ N (0, σ2) ⇒ ρ(Xi, t) =
1

σ2
(Xi − t)2 squared loss (L2)

p(x) ∼ e−
|x|
τ ⇒ ρ(Xi, tI =

1

τ
|Xi − t| absolute loss (L1)

Squared loss gives us t = 1
N

∑
iXi, and L1 gives us t = median

• Huber loss: combine the advantages of mean and median

ρκ(Xi, t) =

{
(Xi − t)2, if |xi − t| ≤ κ

2κ|Xi − t| − κ2, otherwise

ψκ(Xi, t) =

{
Xi − t, if |i − t| ≤ κ

κsign(Xi − t), otherwise

[The lecture contains a plot of Huber here]

• for Gaussian distributions: κ = 1.37σ

var(Huber-center)

var(mean)
= 1.05 for ε = 0 (uncontaminated)

= 0.21 (ε = 5%, τ = 10σ)

= 0.13 (ε = 10%, τ = 10σ)

• biweight loss:

ρκ(x, t) =

{
1−

[
1−

(
X−t
κ

)]3
, |x− t| ≤ κ

1, else

ψκ(x, t) =

(x− t)
(
1−

(
x−t
κ

)2)2
, |x− t| ≤ κ

0, else

non-convex ⇒ hard to solve

17 Lecture 10/12

application of robust loss functions in regression

• model: Y = Xβ + ε, estimate β̂

52

• residual: ri(β) = Yi −Xiβ

• regression problem54:

β̂ = argmin
β

∑
i

Loss(ri(β)) ⇔
∑
i

ψ(ri(β)) =
! 0

• OLS: Loss(r) = r2

• robust regression: Loss(r) = ρκ(r) Huber function

– Huber weight function

wκ(r) =
ρκ(r)

r2
=

{
1, |r| ≤ κ
κ
|r| , |r| > κ

β̂ = argminβ
∑

iwκ(ri)r
2
i

– iterative solution by iterated Re-weighted Least Squares

∗ define initial guess β(0) and compute r
(0)
i

∗ repeat until convergence, t = 1, .., tmax

· β̂(t) = argminβ
∑

iwκ(r
(t−1)
i)(Yi −Xiβ)

2 by weighted least squares

• Least absolute deviation regression: Loss(r) = |r|

– w(r)
[
= Loss(r)

r2

]
= 1

|r|+ε gives an approximate solution in IRLS

– exact solution: reduce LAD regression to a linear program and solve with
Simplex algorithm

introduce variables ui to get the following problem55:

min
β,ui

∑
i

ui subject to ui ≥ 0 ∀i

ui ≥ Yi −Xiβ

ui ≥ −(Yi −Xiβ)

– at the minimum u : i = |Yi −Xiβ̂| = |ri|
– use standard solvers (library)

– caveat: the solution is not unique

– solution: solve OLS problem restricted to the set of optimal LAD solutions

54ψ = ∂Loss(x)
dx

is the influence function
55The second and third constraints are equal to ui ≥ |Yi−Xiβ| which wouldn’t be linear and is therefore

not allowed.

53

Risk, Loss, and Optimism

or: model assessment and selection

• what is risk?

– not the probability of undesirable events, but: the probability of undesirable
events weighted by the their consequences as measured by a “loss” (loss of
money, lives, opportunities, ...)

• the risk of a rule (decision, regression, prediction, ...) Ŷ = f̂(X) is the expected
loss of this rule for the given loss function L(f̂(X), Y ∗) (where Y ∗ represents the
truth).

risk(f) = E(X,Y)∼D[Loss f(X), Y)] =

∫
p(x, y)Loss f(X), Y)dxdy

• optimal rule f̂ minimizes expected risk (f̂).

• canonical example: access control (e.g. fingerprint scanner) cases

– Y = 1, f(X) = 1 ⇒ TP ⇒ Loss = 0

– Y = 0, f(X) = 0 ⇒ TN ⇒ Loss = 0

– Y = 1, f(X) = 0 ⇒ FN ⇒ Loss = LFN

– Y = 0, f(X) = 1 ⇒ FP ⇒ Loss = LFP

• Assume p(Y |X) is the Bayesian posterior

Bayesian risk: R(granting access|X) = p(Y = 0|X) · LFP

R(deny access|X) = p(Y = 1|X) · LFN

minimize Bayesian risk: grant access ⇔ R(grant|X) < R(deny|X)

R(grant|X)

R(deny|X)
< 1 ⇒ p(Y = 1|X)

p(Y = 0|X)
>
LFP

LNP
= t

• we recover minimum error prediction, when Loss= 0-1-loss: L(f̂(X), Y) = 1(f̂(X) ̸=
Y), LFP = LFN = 1

• different definitions of Loss just shift the decision threshold ⇒ application depen-
dent

• expand by Bayesian formula p(Y |X) = p(X|Y)p(Y)/(pX)

decide y = 1 ⇔ p(X|Y = 1)

p(X|Y = 0)
>
LFP

LFN

p(Y = 0)

p(Y = 1)

⇒ the loss ratio adjusts the ratio of the priors

54

• The user can in principle choose an (application specific) loss after training and
just change decision threshold

• but: probability estimates may be inaccurate away from the threshold where model
was trained on

⇒ retrain, whenever the threshold (Loss) changes

• in order to allow the user to choose the appropriate threshold, we must report the
performance of our algorithm at different thresholds

⇒ Receiver Operating Characteristic (ROC curve)

• Let N0, N1 be the number of negative/positive test instances.

– TP, FN, FP, FN the number of the respective outcomes

– “true positive rate” (“sensitivity”, “recall”):

hTP (t) =
TP (f)

N1

“false positive rate”

hFP (t) =
FP (t)

N0

– ROC curve: parametric plot hTP (t) vs. hFP (t) for t ∈ [0,∞)

∗ limit cases:

· t = 0 (everything classified ŷ = 1): hTP (0) = 1, hFP (0) = 1

· t = ∞ (never classify ŷ = 1): hFP (0) = hFP = 0

· perfect classifier ∃t̂, hTP (t̂) = 1, hFP (t̂) = 0

· guessing: ∀t : hTP (t) = hFP (t) (if N0 = N1)

18 Lecture 15 / 10

18.1 How to report performance as a function of decision threshold

ROC curve: draw parametric curve

(
hFP (t)
hTP (t)

)
=

(
x
y

)
[The lecture contains the usual ROC plot here]

• use hTP (t) and hFP (t) to compute application specific risk (t)

• choose t̂ = argmint risk(t) = Eloss(t).

55

• variation: draw

(
hTN (t)
hTP (t)

)
⇒ mirrored diagram (around x = 1/2 axis), because

hTN = 1− hFP

• AUC =
∫ 1
0 ROC-curve dx ∈ [1/2, 1] if N0 = N1

⇒ best classifier maximizes AUC (actually, the representative score is minimize
log(1−AUC)

• when we have very unbalanced problems (N1 << N0) (for example: similarity
search in a database)

Use Precision-Recall-Curve instead of ROC. Recall = hTP (t)

– Recall(t) = hTP (t) (“How many % of the relevant were found”)

– Precision(t) = #TP (t)
#TP (t)+#FP (t) (“how many % of the answers are relevant”)

⇒ draw parametric curve

(
Precision(t)
Recall(t)

)
• F1-Score: F1(t) =

2Precision(t)Recall(t)
Prec(t)+Rec(t) harmonic mean

18.2 How to estimate optimism ? (= test error)

• test error E(X′,Y ′)∼D[Loss(Y
′, f̂(X ′)] (model is fixed as a function of the training

set {(Xi, Yi)}Ni=1

• to make analytical computations, it is easier to average over all possible training
sets (=possible models)

expected test error ETS∼DN

[
E(X′,Y ′)∼D[Loss(Y

′, f̃(X ′|TS))]
]

• even easier:

– in sample test error

– keep Xi fixed and only draw new Yi

ErrIN =
1

N

∑
i

EYi∼p(Y |Xi)

[
Loss(Yi, f̂(Xi))

]
(often Xi are deterministic (e.g. tomography)) then Err = ErrIN , otherwise
ErrIN is an approximation of Err56

• expected in-sample test error

ETS(ErrIN) for analytical computations
56(ErrIN → Err as N → ∞?)

56

• optimism: opt = Err − err57

• expected opt: ETS(opt) = ETS(Err)− ETS(err)

• in-sample optimism: optIN = ErrIN − err

• expected in-sample optimism: ETS(optIN) = ...

be clear about which optimism you are talking about.

2 Reasons to estimate / measure optimism:

1. model assessment: report to the user how well your model works⇒ estimate should
be correct

2. model selection: among candidate models choose, the one where err + ˆopt is min-
imal ⇒ ranking should be correct

3 approaches

• empirical estimation (cross-validation)

• analytical formula (Mallow’s Cp criterion)

• combination of both (covariance penalty with Rademacher sampling).

18.3 Empirical estimates

• cross validation:

– split the training data into k groups (“folds”) with ≈ N
K instances each

– for l = 1, ...,K

∗ train on TS\Foldl to get f̂l

∗ estimate ˆErrl on Foldl using f̃l

– return 1
K

∑
l

ˆErrl = Êrr

• popular K ∈ {2, 5, 10, N} the last is called leave-one-out CV (aka LOOCV)

• advantages: easy and general (works for all models)

• disadvantages: (K repetitions may be too expensive)58, high variance

• variants to reduce variance

– repeat CV: repeat K-fold CV T times and return average (choose T · K ≈
50...200)

57err = training error
58mostly a problem of the past

57

– reversed CV:

∗ train on Foldl

∗ test on TS\Foldl
lower variance, but higher overfitting ⇒ penalizes complex models

– corrected CV: estimates optimism instead of test error

∗ for l = 1, ...,K

· train on TS\Foldl to get f̂l

· ˆErrl test error of Foldl, ˆerrl total error of f̂l on all data

=
1

K
Êrrl +

K − 1

K
errl

ˆoptl = ˆErrl − ˆerrl

∗ compute average: ôpt = 1
K

∑
l

ˆoptl

∗ train f̂ on all data, return: Êrr = err + ˆopt

• Bootstrapping and the Out-of-Bag Error

– bootstrap sampling = take a second order sample;

define new training data S′ = {(X ′
i, Y

′
i)}Ni=1, by (X

′
i, Y

′
i) = Select((X1, Y1), ..., (XN , YN))

uniformly at random (sampling with replacement)

– (Xi, Yi) has certain probability to be not drawn in any of the N repetitions:
“out-of-bag”

p(chosen) =
1

N

p(not chosen) = 1− 1

N

p(never chosen) =

(
1− 1

N

)N

– about 37% are OOB, 63% are in bag (since 1/e ≈ 0.368)

– OOB error:

∗ for t = 1, ..., T

· draw S′
t and train f̂t(X|S′

t)

· compute rit = Loss(Yi, f̂t(Xi|S′
t)

∗ r̂i =
∑

t rit1(i̸∈S′
t)∑

t 1(i ̸∈S′
t)

∗ ÊrrOOB = 1
N

∑
i r̂i

∗ OOB is essentially free for an ensemble method trained on bootstrap
samples (random forest → later)

∗ disadvantage: slightly biased upwards (pessimistic)

58

18.4 (Semi-) Analytical methods

• covariance penalty:

ÊrrIN = err +
2

N

∑
i

covTS(Yi, Ŷi)

covTS(Yi, Ŷi) = EYi∼p(Y |Xi)(Yi − µi)(Ŷi − µ̂i)

µi = E(yi)

• can be computed analytically for OLS, ridge regression, LASSO

• determine empirically by sampling methods (Rademacher sampling, parametric
bootstrap)

19 Lecture 07/01

19.1 Unsupervised Learning

• find structure in unlabeled data (no expert annotations)

• rational: labeled data is expensive while unlabeled data is almost free

⇒ usually, we have lots of unlabeled data ⇒ make best use of it

• data mining: find interesting regularities (worth further investigation) in huge
amounts of data for research & development

• improve the feature space to make some tasks simpler

– remove uninformative features

– to merge correlated features into one pseudofeature (noise reduction)

– create (compute) new features to simplify decision boundary (explicitly by
mapping into augmented feature space, implicitly by kernel trick)

• group instances automatically

– clustering

– low-dimensional embedding in a high-dimensional ambient space

– blind signal separation

19.2 Principal Component Analysis

• simplest kind of linear feature space transform X̃ = X ·W 59

• define W according to some application-dependent optimality criterion.

PCA: minimize the squared approximation error between X̃ and X

59dimX = N × d, dimW = d× d′, usually d′ ≤ d

59

• basic version: replace X with a single feature ṽ = X̃(N × 1) such that the kernel
matrix changes as little as possible XX⊤ ≈ ṽṽ⊤

• important: X must be centered beforehand

• minṽ ||XX⊤ − ṽṽ⊤||2F 60 ⇔ minv,λ ||XX⊤ − λvv⊤||2F s.t. ṽ⊤v = 1

[Trick: ||B||2F = trB2]

⇔ minv,λ tr(XX
⊤)2 − 2λtr(XX⊤vv⊤) + λ2tr(vv⊤)2

∂

∂v
(...) = −2λ2XX⊤v + λ24(v⊤v)v =! 0

⇒ XX⊤v = λv ⇒ v is an eigenvector of XX⊤ with eigenvalue λ. Which eigen-
value? Insert into Loss

min
λ,v

Loss(v, λ) = −2λtr(XX⊤vv⊤) + λ2tr(vv⊤vv⊤)

= −2λ2tr(vv⊤) + λ2tr(vv⊤) = −2λ2 + λ2 = −λ2

⇒ λ should be as big as possible (recall that all eigenvalues of XX⊤ are non-
negative)

⇒ v is the eigenvector of XX⊤ with the biggest eigenvalue λ.

• how to compute the new feature ṽ = λv without constructing XX⊤ (which is
huge)? Especially for new data (test data)

XX⊤v = λv

X⊤X(X⊤v) = λ(X⊤v) u := X⊤v

X⊤Xu = λu

XX⊤ (Xu)︸ ︷︷ ︸√
λv

= λ(Xu) (if u⊤u = 1)

• result: best 1D feature is ṽi = λvi = Xiu. with u the eigenvector of X⊤X with
maximal eigenvalue

• this can be replicated on the residual matrix XX⊤ − ṽṽ⊤

⇒ the second best feature is the eigenvector of XX⊤ with the second biggest
eigenvalue

• PCA algorithm:

– center X

60Frobenius norm:||B|F =
∑

ij B
2
ij

60

– compute scatter matrix X⊤X and its eigensystem {uj , λj}dj=1, sort such that

λj ≥ λj+1 (alternatively, compute SVD of X = UΛV ⊤)

– choose d′ ≤ d

– compute X̃(∈ [N × d′]) according to X̃ij = Xiuj

• alternative interpretations of PCA

– rotate the coordinate system such that the columns of X̃ (new features) be-
come uncorrelated (Cov(X̃) is diagonal)

⇒ The appropriate new coordinate axes are exactly the eigenvectors of X⊤X

– intuitively we approximate the data by an ellipsoid whose axes are uj . When
d′ < d, we keep only the axes with largest variance which are the most
informative dimensions in absence of other criteria.

• whitening: scale each column to X̃ to unit variance (equivalently: define X̃ij =
Xj

uj√
λj
)

⇒ ellipse approximation becomes a sphere, all axes have “equal units”

preprocessing for more complicated analysis

• alternative interpretation: embed X̃ into the space spanned by X (usually Rd)

X̃ = XU

X̂ = X̃U⊤

PCA minimizes the squared reconstruction error ||X − X̂||2F (since we keep the uj
with the biggest λj)

19.3 application: eigenvaces (face recognition)

• compute the average face and subtract (centering)

• Xi are the flattened (centered) images

• compute PCA of tX and construct X̃ (d′ ∈ [20, 100]) X̃ = XiU

• classify a new face: center and project (X̃new = XnewU) and use nearest-neighbor
rule in X̃ space

20 Lecture 12 / 01

20.1 Linear Dimension Reduction

• X̃ = X · Ũ X = N × d, X̃ = N × d′, d′ ≤ d

61

• fundamental algorithm: PCA

require that the columns X̃j are uncorrelated

⇒ Ũ are the first d′ columns of the eigenvector matrix X⊤X = UΛU⊤, (U is sorted
by decreasing eigenvalues)

• prerequisite X has been centered (i.e. column mean 1
N 1⊤X = X̄c = 0 (with

1 = (1, ..., 1)⊤ ∈ Rn)

• modifications of PCA: all the usual tricks can be applied

– change the objective of the optimization i.e. different requirements of X̃.

∗ ICA (Independent component analysis): columns X̃j are statistically in-
dependent

∗ NMF (Non-negative Matrix Factorization): require X ≥ 0, X̃ ≥ 0, Ũ ≥ 0

∗ ...

– make the dimension reduction non-linear

∗ kPCA (kernel PCA): apply the kernel trick

∗ LLE (local linear embedding): piecewise linear mapping

– if X contains outliers

∗ Robust PCA

20.2 Kernel PCA

• define non-linear mapping ϕ(X) to a high-dimensional feature space

• kernel matrix K = ϕ(X)ϕ(X)⊤ Kernel function ki1,i2 = K(Xi1 , Xi−2)

• apply PCA to K in the augmented feature space without explicit computation of
ϕ(X)

step 1 : center K without computing ϕ(X)

K = (ϕ(X)− 1ϕ(X))(ϕ(X)− 1ϕ(X))⊤

ϕ(X) =
1

N
1⊤ϕ(X)

⇒ K ′ =

(
ϕ(X)− 1

N
11⊤ϕ(X)

)(
ϕ(X)− 1

N
11⊤ϕ(X)

)⊤

=

(
I − 1

N
11⊤

)
︸ ︷︷ ︸

=M

ϕ(X)ϕ(X)⊤︸ ︷︷ ︸
=K

(
I − 1

N
11⊤

)

K ′ =MKM⊤ = K − 1

(
1

N
1⊤K

)
︸ ︷︷ ︸

col avg

−
(

1

N
K1

)
︸ ︷︷ ︸

row avg

1⊤ + 1

(
1

N2
1⊤K1

)
︸ ︷︷ ︸

avg of K

1⊤

62

⇒ we don’t need ϕ(X) where M is called the centering matrix

step 2 : Compute eigendecomposition of K ′ = UΛU⊤, define Ũ by the first d′ columns
of (sorted) U [may be expensive because K ′ is [N ×N])

⇒ use algorithm that only computes the first d′ eigenvectors of K]

X̃ = Ũ Λ̃1/2

step 3: express X̃ in terms of the kernel matrix.

find matrix A such taht X̃ = K ′A =! Ũ Λ̃1/2

(UΛU⊤)A =! UΛ1/2

U⊤UΛU⊤A = U⊤UΛ1/2

⇒ A = Ũ Λ̃−1/2

⇒ X̃j = K ′Aj with Aj =
Ũj√
λj
, where Ũj is the j’s eigenvector of K ′ and λj is the

j’s eigenvalue of K ′

step 4 : mapping of new data instance Xnew ∈ [1× d]

• compute the kernel vector of Xnew

(knew)i = K(Xnew, Xi)

• center knew

k̃′new = knew − 1

N
K1− 1

(
1

N
1⊤knew

)
+ 1

(
1

N

2

1⊤K1

)
• map X̃new = k′newA

20.3 Local Linear Embedding (LLE)

• piecewise linear dimension reduction (linear dimension reduction in a local neigh-
borhood)

• training algorithm

– for each point i = 1, ..., N

∗ define the neighborhoodN (i) = {i′ : d(Xi, Xi′)is among k nearest neighbors }
∗ express Xi as a linear combination of its neighbors

min
wi

(Xi − wiX)2

W = (wi, ..., wN)⊤ ∈ RN×N , Wi =

{
wii′ , for i′ ∈ N (i)

0 else
,
∑

i′ Wii′ = 1

63

[
∗ define C(i) =

∑
i′∈N (i)(Xi′ −Xi)

⊤(Xi′ −Xi)

∗ find w′
i by solving C(i)w′

i = 1

∗ normalize w′′
i = wi/||w′

i||
∗ insert w′′

i into wi at the appropriate positions]
• given W find X̃ so that X̃i ≈ WiX̃ (local reconstruction property is preserved)
(we constructed W such that Xi ≈WiX)

min
X̃

∑
i

||X̃i −WiX̃||2

equivalent to

min
X̃

tr((X̃ −WX̃)⊤(X̃ −WX̃)) = tr[X̃⊤ (I −W)⊤(I −W)︸ ︷︷ ︸
=M

X̃]

min
X̃

trX̃⊤MX̃

Let M = UΛU⊤ be the eigendecomposition if M . Sort U by eigenvalues, let Ũ be
the d′ trailing eigenvectors, except the last ev, because it is trivial

M1 = 01

X̃ = Ũ Λ̃−1/2

• mapping of new data Xnew

– find the k nearest neighbors of Xnew in the training data

– find wnew by optimizing the reconstruction error

wnew = argmin
w

||Xnew − wX||22
∑
i′

wnewi′ = 1

– map X̃new = wnewX̃ (reconstruction from neighbors in X̃ space)

20.4 Robust PCA

• standard PCA assumes that the ignored dimensions (d′+1, ..., d) in U contain only
Gaussian noise

• what if this is not true?

• model: decompose X into X = X̃Ũ⊤ + S, with the first term being a low rank
matrix that isn’t sparse and S is assumed to be a full rank sparse matrix (instead
of rank d-d’ Gaussian noise)

• Candes & Li, 2011: the decomposition can be obtained exactly & “easily”

64

21 Lecture 12/01

21.1 Alternative objective functions in linear dimension reduction

• PCA :X̃ = XŨ Ũ : d× d′ orthonormal, X̃: N × d′ with uncorrelated columns

⇒ Ũ : first d′ eigenvectors of X⊤X

• NMF non-negative matrix factorization:

X = X̃W⊤(⇒ X̃ = XW+)

where W+ is the pseudo-inverse of W .

X ≥ 0 given, X̃,W ≥ 0

• application: document topic discovery (recall LASSO regression)

X is a matrix of word counts

Xi is a document

Xij is the count of word j in document i (d words considered)

(W⊤)i′ word counts of a prototypical document for topic i′, d′ topics

X̃i the “loadings” of document i with respect to the topics

X̃ii′ how much does document i talk about topic i′

⇒ negative numbers in X, X̃,W would make no sense

– construct objective function (Lee and Seung, 1999)

assumption: Xij result from a counting process

⇒ noise is Poisson distributed

⇒ true count = mean of the Poisson distribution µij = (X̃W⊤)ij

⇒ p(Xij = c) =
µc
ij

c! e
−µij

– idea. ML approach: find X̃ and W⊤ that maximizes the log-likelihood of the
observed data X.

max
X̃,W

∑
i,j

Xij log(X̃W
⊤)ij − (X̃W⊤)ij

– this model is non-convex, so has local optima (algorithm will not generally
find global optimum)

– the global optimum may not be unique

– algorithm:

∗ fix d′ ≤ max(N, d)

∗ form an initial guess X̃(0),W (0)

65

∗ alternating optimization until convergence t = 1, ..., T

· for all k = 1, ..., d′

X̃
(t)
ik = X̃

(t−1)
ik

(∑d
j=1W

(t−1)
jk Xij

)/
(X̃W⊤)

(t−1)
ij∑d

j=1W
(t−1)
jk

Wjk =W
(t−1)
jk

(∑N
i=1 X̃

(t−1)
ik Xij

)/
(X̃W⊤)

(t−1)
ij∑N

i=1 X̃
(t−1)
ik

– interesting: multiplicative update rule

– converges to good local minima when the initial guess was good ⇒ active area
of research

∗ classical (Lee & Seang): random uniform in [0, 1]

∗ better: find rows of (W⊤)(0) (topics) by k-means clustering of the rows
of X (⇒ next week)

∗ random Acol initialization: form rows of (W⊤)(0) as average of randomly
selected rows of X

– mapping of new data instance Xnew, given W

⇒ construct X̃new by minX̃new
||Xnew − X̃newW

⊤||22 by non-negative least

squares or non-negative LASSO61

• comparison with eigenfaces

– face recognition using PCA or NMF

– PCA represents each face as a superposition of prototypical faces

– NMF tends to be sparse, i.e. represents each face as a superposition of parts

• Independent Component Analysis (ICA)

Xj = (X̃W⊤)j + εj

X = X̃W⊤ + ε

⇒ X̃ = XW+

W+ =W (W⊤W)−1

⇒ goal : determine W+, but now require that the columns of X̃ are statistically
independent, not just uncorrelated as in PCA

• application: cocktail party problem

– k = 1, ..., d′ are people talking (columns of X̃ are the voltage over time of a
loudspeaker formalizing the mouth)

61ensures a sparse solution (most topics do not occur in the given Xnew

66

– j = 1, ..., d are microphones (columns of X are the voltages measured in each
microphone over time)

– goal: recover what each person said, given the recordings of the microphones

Xj = (X̃W⊤)j +noise ⇒ each microphone hears a superposition of all people
talking; the rows of W⊤ determine the weight of each person in the observed
Xj

– problem: PCA does not work

– statistical independence works better

– objective function: p(X̃) =
∏d

k=1 p(X̃k)

⇔ entropy of X̃ equals the sum of the entropies of the columns X̃k. H(X̃) ≈∑
kH(X̃k)

⇔ Kullback-Leibler divergence, vanishes:

KL(X̃k|X̃) =
∑
k

H(X̃k)−H(X̃) → minimize

⇔ KL(X̃k|X) =
∑

kH(X̃k)−H(X)− log detW+︸ ︷︷ ︸
=0

• since columns X̃k are independent, the covariance of X̃ is diagonal (uncorrelated)

• preprocess X by whitening

– X ′′′: given matrix

– X ′′: centering of X ′′′, that is X ′′ = X ′′′ − 1X
′′′

– X ′: PCA of X ′′ (without dropping features)

– X: X ′ with columns normalized to unit variance (Xj = X ′
j/
√
λj , where λj is

j’s eigenvalue of (X ′′)⊤X ′′)

⇒ columns of X (after whitening) are uncorrelated unit variance ⇒ covariance of
X is 1 (unit matrix)

• X̃ = XW+ where cov(X̃) is diagonal and cov(X) = 1 ⇒W+ must be orthogonal

• W can only be recovered up to scaling (amplitude) ⇒ scale W+ arbitrarily such
that is becomes orthonormal) detW+ = 1, log detW+ = 0

min
X̃

∑
k

H(X̃k)−H(X)

67

22 Lecture 19/01

22.1 Independent component analysis (ICA)

• model: X = X̃ ·W⊤+ε, whereW is an orthonormal matrix (when X was whitened
beforehand) and X̃ has statistically independent columns, non-Gaussian. Same
model as PCA.

• objective: determine X̃

min
X̃

∑
j

H(X̃j)−H(X)

with H being the entropy.62

22.1.1 Approximate Solution via FastICA (Hyrarinen and Oja

• algorithm of forward stagewise type:

– determineW+, the pseudoinverse ofW⊤ (X̃ = X ·W+) one column at a time

– in iteration t: greedily find (W+)t conditioned on (W+)1, ..., (W
+)t−1

• objective:
∑

kH(X̃k) (since H(X) is independent of solution)

• among all distributions with given (fixed) variance, the Gaussian has the highest
entropy.

⇒ neg-entropy J(X̃j) = H(Zk)−H(X̃k) → maximize63

• approximate neg-entropy by expectations

J(X̃j) ≈ (E[G(Zk)]− E[G(X̃k)])
2

G is a non-quadratic loss function, e.g. G(r) = log(cosh(r)) (similar to Huber
function); G(r) = − exp(−r2/2) (similar to bigweight function -1)

• FastICA algo:

– for k = 1, ..., d′ (d′ ≤ d feature space dimensions)

∗ init (W+)
(0)
k randomly

∗ repeat until convergence (t = 1, ..., T)

62PCA: minX̃,W⊤ ||X − X̃W⊤||2F
63with Zk being an auxiliary Gaussian variable with var(Zk) = var(X̃k)

68

· optimize the k’s column of W̃+ via Newton iterations

v =
1

N

∑
i

X⊤
i G

′(Xi(W
+)

(t−1)
k)− 1

N

∑
i

(W+
k)−1G′′(Xi(W

+)
(t−1)
k)

v′ = v −
k−1∑
l=1

(V (W+)l)(W
∗)l orthogonalization

(W+)
(t)
k =

v′

||v′||
normalization

· return W+ = [(W+)1, ..., (W
+)d′], compute X̃ = XW+

22.2 Clustering

• dimension reduction reduces the number of columns (features) of X

• clustering reduces the number of rows (instances)

– group related / similar instances into clusters

– replace each cluster by a representative

– notation: C number of clusters C ≤ N , k: cluster index, k ∈ {1, ..., C}; Ck:
kth cluster; Nk: size of cluster k;

∑
kNk = N

– typical representatives:

∗ mean Xk = 1
Nk

∑
Xi∈Ck

Xi

∗ medoid: Xk = argminXi∈Ck

∑
i′∈Ck

δ(Xi, Xi′), where δ is some arbitrary
metric

(similar to the median, but restricted to existing instances)

∗ higher computational complexity: O(N2
k) vs mean: O(Nk)

– Hierarchical clustering

∗ start with considering each instance a cluster of its own

∗ repeat until only a single cluster remains:

· merge the pair of closest clusters (δ(Ck, Ck′) is minimal

· update the cluster distances between the new and all remaining clus-
ters

– result: “dendrogram”

∗ define a threshold on cluster distance or desired number of clusters C
where merging stops

∗ good threshold: big gap between merge distances

∗ the result critically depends on the cluster distance definition

69

· single linkage: nearest neighbors between clusters

· complete linkage: farthest neighbors

· average linkage: mean distance

· representative linkage: δ(Xk, Xk′)

∗ computation complexity differs

· single linkage ⇔ minimum spanning tree

algorithm of Kruskal O(E logE), E = O(N2)

· the others require O(NkNk′) to update the cluster distance

∗ effect of different choices:

· when the data cluster well, all criteria generate similar clusters

· single linkage may suffer from “chaining”

· complete linkage may violate the “closeness property” (distances within
a cluster may be bigger than distances between clusters)

· average linkage & representative linkage provide a compromise.

23 Lecture 21 / 01

23.1 Clustering: k-means and EM algorithm

• given: X, distance δ(Xi, Xi′)

• total distance. D = 1
2

∑
i,i′ δ(Xi, Xi′)

• any clustering partitions this into the within-cluster distance Din and between-
cluster distance Dbetw

D = Din +Dbetw

Din =
1

2

C∑
k=1

∑
i,i′∈Ck

δ(Xi, Xi′)

and Dbetw analogously

• a good clustering should minimize Din and maximize Dbetw ⇔ similar instances
(small distance) are clustered together

• ideally, we would optimize over all possible clusterings, but this is intractable or
trivial if C = N

70

• try a number of fixed C and choose the “best” ⇒ later

• consider C fixed (hyperparameter), but this is still intractable

• k-means is a greedy approximation algorithm (k = C) for the special case δ(Xi, Xi′) =
||Xi −Xi′ ||22 ⇒ easy to show Din =

∑C
k=1Nk

∑
i∈Ck

||Xi −Xk||2

– when cluster membership i ∈ Ck is fixed, Din is a minimum when Xk =
1
Nk

∑
i∈Ck

Xi

– when the representatives, Din is minimized by assigning each instance to the
nearest representative

• k-means algorithm: alternating optimization

– fix C

– select initial guess X
(0)
k for k = 1, ..., C

– repeat until convergence (t = 1, ..., T)

∗ optimize cluster membership

∗ update representatives

• this converges to a local optimum, sometimes a bad one

⇒ need a good initial guess

– standard guess: choose X
(0)
k at random

⇒ repeat optimization with several initial guesses and take the best optimum
(minimal Din)

– k-means++:

∗ choose X
(0)
1 at random

∗ repeat for k = 2, ..., C

· compute for each instance i the distance to the nearest representative
already selected

· define a pseudo-probability δ =
∑

i δi, pi =
δi
δ

· select X
(0)
k at random such that Xi is selected with probability pi.

• new data Xnew are assigned to the nearest cluster

• variant: k-medoid: always choose X
(t)
k from Xi

– works for arbitrary distances δ(·, ·), but is O(N2
k) instead of O(Nk)

• how to choose the number of clusters C?

– in general an unsolved problem, but many heuristics exist

– simplest C =
√
N/2 (when the exact number is not important)

71

– alternative: exhaustive search: set C = Cmin,, Cmax and choose the “best”,
for example

∗ cross-validation: compute average Din
D on test data

∗ elbow64 method: draw Din
D vs. C

• application: fit lines (alternative to RANSAC)

[The lecture contains some plots here]

23.2 Expectation-Maximization Algorithm

• k-means produces hard cluster memberships (each Xi belongs to exactly one clus-
ter)

• how about soft membership? p(Yi = k|Xi,Θ) ∈ [0, 1]

• mixture model with C components p(Xi|θ) =
∑C

k=1 πkPk(Xi|βk)
πk mixture coefficient, i.e. probability that Xi comes from component k

∑
k πk = 1

Pk(Xi|βk) distribution of the component (cluster) k

• usually, all components have the same distribution type, mostly Gaussian

• theorem: with sufficiently big C, any distribution can be represented as a Gaussian
mixture to any desired precision.

• optimize this according to maximum likelihood method

likelihood p(x) =
∏

i p(Xi|θ), log-likelihood L(x) =
∑

i log p(Xi|θ)

∂L

∂βk
= ... =

∑
i

p(Yi = k|Xi, θ)︸ ︷︷ ︸
soft cluster membership

∂

∂βk
log p(Xi|βk) =! 0

• if class membership were hard and known

p(Yi = k′|Xi, θ) = δkk′ for some k

⇒
∑

i:Yi=k

∂

∂βk
p(Xi|βk) =! 0

standard log-likelihood for each cluster separately

64

· point nearest to the origin

· point of maximum curvature
an obvious elbow does not always exist

72

• if a soft clustering were known

p(Yi = k|Xi, θ) = γik
∑
k

γik = 1 ∀i

∑
i

γik
∂

∂βk
log p(Xi|βk) =! 0

⇒ weighted log-likelihood

if p(Xi|β) = N (Xi|µk, sk) ⇒ weighted least squares problem

24 Lecture 26 / 01

24.1 Clustering with EM algorithm

• soft cluster assignment γik = p(Yi = k|Xi, θ) prob. that Xi belongs to cluster
k ∈ 1, ..., C

• model65: p(Xi|θ) = p(Xi|Yi, θ)p(Yi|θ)
[whereas the LHS is difficult to learn, the hope is that the RHS is easier to learn,
but: cluster membership unknown; but we can approximately determine them]

⇒ alternating optimization: learn Yi keeping θ fixed and learn θ keeping Yi fixed.
66

• mixture model:

p(Xi|θ) =
∑
k

πkp(Xi|βk)

with
∑

k πk = 1, πk > 0 ∀k for the mixture coefficients.

• gaussian mixture model: pk(Xi|βk) = N (Xi|µk, Sk)

• Data log likelihood: L(θ) =
∑N

i=1 log p(Xi|θ) =
∑

i log(
∑

k πkpk(Xi|βk)) → max

•

∂L

∂βk
=
∑
i

γik
∂

∂βk
log pk(Xi|βk) =! 0

⇒ with γik fixed, this is a weighted ML problem for the kth mixture component

⇒ alternating optimization: Solve
∑

i γik(θ
(t−1)) ∂

∂βk
log pk(Xi|βk) to get β

(t)
k

65Yi is a “latent” or “hidden” variable, which denote cluster membership
66this is just an approximation, the exact solution requires a joint optimization of Yi, θ

73

•

∂(L+ λ(
∑

k πk − 1))

∂πk
=! 0 ⇒ π

(t)
k =

1

N

∑
i

γik(θ
(t−1))

• algorithm (for Gaussian mixture models)

– choose number of mixture components C (difficult! see k-means)

– define initial guess θ(0) (random, k-means++ initialization)

– repeat until convergence t = 1, ..., T

∗ compute responsibilities γik

γik = p(Yi = k|Xi, θ
(t−1)) =

π
(t−1)
k N

(
Xi

∣∣µ(t−1)
k , s

(t−1)
k

)
∑

k′ π
(t−1)N

(
Xi

∣∣µ(t−1)
k′ , s

(t−1)
k

)
∗ E-step (expectation step)

π
(t)
k =

1

N

∑
i

γik

∗ M-step (maximization step): determine the weighted ML solution for
each mixture component individually

µ
(t)
k =

∑
i γikXi∑
i γik

, s
(t)
k =

∑
i γik(Xi − µ

(t)
k)⊤(Xi − µ

(t)
k)∑

i γik

24.2 State-of-the-art Classification Methods

• Support Vector Machines (later: ensemble methods (random forest, boosting))

– consider linearly separable data (linear classifier has zero training error); two
classes Yi ∈ {−1, 1}
⇒ generate infinitely many decision planes with zero training error, which
one is the best? ⇒ “margin maximization”

– intuitive explanation:

∗ assume that test data are similar to training data; test points are within
distance r from training points with high probability

∗ to minimize test error, we should also correctly classify the r neighbor-
hood.

⇒ a lot fewer decision planes

∗ margin maximization means choose r as big as possible, s.t. only one
plane remains

74

∗ decision rule = sign(Xβ + β0︸ ︷︷ ︸
plane eq.

)

margin maximisation Yi(Xiβ + β0) =Mi → maximize

define M = miniMi(most critical instances) ≥ 0 (because data is lin
separable)

∗ value of M is arbitrary because Yi(X(τβ) + τβ0) = τMi is the same
condition ⇒M = 1.

∗ distance of a point from a plane: Yi

(
Xi

β
||β|| +

β0

||β|

)
= margin ≥ 1

||β||

⇒ max margin ⇔ min ||β|| ⇔ min 1
2 ||β||

2

• SVM optimization problem — separable case

min
β,β0

1
2 ||β||

2 s.t. ∀i : Yi(Xiβ + β0) ≥ 1

– margin maximization theoretical explanation with “structured risk minimiza-
tion”) (Vapnik-Chervonenkis-theory VC-theory)

∗ we want to minimize optimism = test error - training error)

∗ we know: optimism decreases when we have more training data; increases
when the model is more powerful (classifier complexity is high)

∗ VC dimension: NVC is a clever way to measure model complexity (closely
related to Rademacher sampling)

∗ a classifier has VC dimension NVC if

· exists a training set of size NVC where the classifier achieves zero
training error for all possible labelings. (even non-sensical ones)

· no such training set exists with size NVC + 1

∗ canonical example: linear classifier in d-dimensional feature space: NVC =
d+ 1

∗ VC theorem: optimism ≤ O

(√
NVC
N

)
∗ for regularized linear classifier, it holds: NVC ∝ ||β||2 → minimizing ||β||2
minimizes overfitting for sufficiently small ||β||2

• SVM optimization problem – non-separable case: two objectives:

1. maximize margin of correctly classified instances

2. minimize loss for wrongly classified instances

– trick: introduce a slack variable ξi ≥ 0 for each instance and change the
constraint into Yi(Xiβ + β0) ≥ 1− ξi

75

– new minimization problem:

min
β,β0,ξi

1
2 ||β||

2 + C
∑
i

ξi s.t. ξi ≥ 0, Yi(Xiβ + β0) ≥ 1− ξi

C ≥ 0: hyper parameter to balance the two goals;

ξi can be interpreted as a loss function:

ξ(Xi, Yi|β, β0) = max (0, 1− Yi(Xiβ + β0))

(this is called the hinge loss)

SVM-like classifiers can be defined for other loss functions as well:

∗ squared hinge loss: max(0, 1− Yi(Xiβ + β0))
2

∗ logistic loss67: log(1 + e−Yi(Xiβ+β0))

– these losses are convex surrogats of the non-convex and non-smooth 0−1 loss.

⇒ easier optimization (unique solution, gradients,...)

25 Lecture 28 / 01

25.1 Support Vector Machines (SVM)

• training data {(Xi, Yi)}Ni=1, Yi ∈ {−1, 1}

• prediction Ŷnew = sign(Xnewβ + β0)

• training

min
β,β0,ξi

1
2β

⊤β + C
∑

ξi

• dual problem:

Lagrangian(β, β0, ξi, αi, λi) =
1
2β

⊤β + C
∑
i

ξi −
∑
i

αi [Yi(Xiβ + β0)− (1− ξi)]−
∑
i

λiξi

αi, λi ≥ 0

∂Lagrangian

∂β
= β −

∑
i

αiYiX
⊤
i =! 0

⇒ β =
∑
i

αiYiX
⊤
i

67this is smooth in contrast to the other two

76

compute primal solution from the dual

∂Lagrangian

∂β0
= −

∑
i

αiYi =
! 0 ⇒ constraint on the αi

∂Lagrangian

∂ξi
= C − αi − λi =

! 0 ⇒ αi = C − λi ⇒ αi ≤ C

⇒ constraint on αi : 0 ≤ αi ≤ C

• eliminate β, β0, ξi from the Lagrangian: dual SVM problem

max
αi

∑
i

αi − 1
2

∑
i,i′

αiαi′YiYi′XiX
⊤
i′

s.t.
∑

αiYi = 0, 0 ≤ αi ≤ C

• Karush-Kuhn-Tucker (KKT) conditions describe necessary conditions for any so-
lution of an optimization problem

∂L0

∂αi
= 0 ∀i : αi[Yi(Xiβ + β0)− (1− ξi)] = 0

[For the rest of the computations see the literature..., the script will only
contain a very abbreviated version of the remaining lectures]

• case 1: Xi is on the correct side of the margin ⇒ no slack needed ⇒ αi = 0

• case 2: Xi is on the margin ⇒ 0 < αi < C

• case 3:Xi is on the wrong side of the margin plane ⇒ αi = C

• all those Xi with αi = 0 have no influence on β, the others are called the support
vectors

• SVM solution depends on the critical points near (or beyond) the decision plane.
In contrast, the solution of QDA and LDA depend on the mean, a typical point

25.2 SVM algorithms

• LIBLINEAR contains a collection of fast algorithms for linear SVM and its variants
(alternative loss functions & regularization terms)

• Model Ŷ = sign(Xβ + β0)

• standard algorithm for classical linear SVM (hinge loss, quadratic regularize) “dual
coordinate descent” (Hsieh et al. 2008)

• [merge the intercept β0 into β by adding an auxiliary constant feature]

77

– initial guess α
(0)
i (zero or random, 0 ≤ αi ≤ C)

– compute β(0) =
∑
α
(0)
i YiXi

– ...

• popular kernels:

– polynomial k(Xi, Xj) = (XiX
⊤
j + 1)τ

– Gaussian K(Xi, Xj) = exp
(
−(Xi−Xj)

2

2τ2

)
• prediction: Ŷnew = sign (

∑
i αiYiK(Xi, Xnew))

if K is Gaussian: “soft nearest neighbor rate” because k ≈ 0 if Xnew is far from Xi

• LIBSVM contains fast algorithms for kernel-SVM (also works for linear SVM, but
are slower than LIBLINEAR)

• Sequential Minimal Optimization (SMO) Observation: SVM optimization can be
done analytically if there are only two instances.

• SMO algorithm:

[...]

• how to recognize convergence? KKT conditions must be fulfilled

Yi
∑
j

αjYjK(Xi, Xj)

> 1, if αi = 0

= 1, if 0 < αi < C

< 1, if α1 = C

• Multiclass problems: we train #classes 1-against-rest SVMs

• advantages of SVM:small error; reasonably fast (especially linear SVM)

• disadvantages: slow when many support vectors & features and need to adjust
the hyperparameters C using cross-validation → some expert knowledge needed in
training

26 Lecture 02/02

noisy XOR problem

• the best linear decision has 25% error 68

68assuming equal class sizes

78

• kernel - SVM with order-2 polynomial kernel uses

K(Xi, Xj) = X̃iX̃
⊤
j = (Xi, Xj + 1)2

X̃i = ϕ(Xi) = (X2
i1, X

2
i2,

√
2Xi1,

√
2Xi2,

√
2Xi1Xi2, 1) = (X̃i1, ..., X̃i6)

• feature X̃i5 is the interesting one:

X̃i5

{
> 0 if Yi = 0

< 0 if Yi = 1

⇒ simple threshold (=̂ linear classifier on X̃) achieves perfect classification ⇒
kernel-SVM works

(but: feature learning =̂ explicitly computing the relevant subset of X̃ would be
even better ⇒ ML 2 next semester)

26.1 Ensemble Methods for Classification

• idea: create a strong classifier by cleverly combining many weak ones

• two main possibilities:

– independent weak classifiers → take the average, example Random Forest

– train classifier t conditional on class 1, ..., (t− 1)

⇒ classifier t tries to correct the mistakes of 1, ..., (t− 1) ⇒ boosting

26.2 Random Forests

• why does the average of weak independent classifiers work?

• suppose each weak classifier has error rate q < 0.5 (if 2 classes)

⇒ success rate p = 1− q

• probability that t classifiers among T are correct is a binomial distribution

p(# correct = t) =

(
T

t

)
p⊤(1− p)T−t

E(# correct) = Tp, Var(#correct) = Tp(1 − p), E
(
correct

T

)
= p > 0.5 and

Var
(
correct

T

)
= p(1−p)

T → 0

• example: q = 1/3 ⇒ std(average of T = 100) ≈ 0047

• E(average T = 100)− 3std(average T = 100) ≈ 0.52. This is called the 3σ bound
(aka 99.7% of the results are within 3σ) → ensemble error rate is 0.15%

79

• but: in practice the individual classifiers are not independent, which means that:
E(avg) = p but var(

∑
t κt) =

∑
s,t cov(κs, κt)

⇒ var(avg) = var
(∑

t κt

T

)
= 1−ρ̄

T σ2 + T−1
T ρ̄σ2 where var(κt) = σ2 and average

correlation ρ̄ = 2
T (T−1)

∑
s

∑
t>s

cov(κs,κt)
σ2

– uncorrelated κt ⇒ ρ̄ = 0 ⇒ var(avg) = σ2

T → 0

– when ρ̄ > 0, the second term T−1
T ρ̄σ2 → σ̄2 ̸= 0 as T → ∞

⇒ it makes no sense to increase T farther when the first term is already less
than 1/10 of the second69

⇒ use T ≈ 101−ρ̄
ρ̄

– interesting trade off:

∗ make individual classifiers more independent ⇒ individual error rate goes
up

∗ make individuals better ⇒ correlation increases, averaging has less effect

• Random Forest empirically achieves a very good compromise

• ρ̄ ≈ 0.05 ⇒ T ≈ 200

• individual classifiers are decision trees

• training of a single decision tree: essentially equal to density trees

– put all instances in a single root node

– place rot node on a stack

– while stack is not empty

∗ pop top node from stack

∗ if termination condition fulfilled

· turn current node into leaf node

∗ else

· find the best split & turn node into split node

· put instances into child nodes & child nodes on stack

• termination condition:

1. node is pure (all instances have same class) ⇒ zero training error

2. maximum predefined tree depth reached

3. splitting would result in a child with too few instances

• Leaf node output (classes k = 1, ..., C)

69arbitrary term

80

– hard decisions (vote for majority class)

– soft decision (leaf returns class probabilities)

• split selection: goal: minimize training error =̂ leafs should be as pure as possible,
but: to avoid overfitting, this should be achieved with as few splits as possible

⇒ optimize purity after every split

• two popular purity measures:

– entropy = −
∑

k p̂k log p̂k

(
p̂k = Nk

N

)
– Gini impurity = 1−

∑
k p̂

2
k

– perfect purity p̂k = 1 for some k, p̂j = 0 for j ̸= k ⇒ H,G = 0

– perfect mixture p̂k = p̂j for all j, k ⇒ p̂k = 1
C and H = logC, G = C−1

C
70

• try all possible splits on all features (sort instance be each feature in turn and use
all gaps as candidate split points)

– for each split we get NLk instances of class k in the left child

...

– C4.5 uses the entropy, while CART uses G

• single decision trees overfit strongly

– traditional solution: pruning =̂ replace subtrees that likely represent only
overfitting by a single leaf

– Breimann 1998: taking the average over many independent trees is much
better (no pruning equired, although sometimes beneficial)

– how to make the trees nearly independent?

1. train each tree on a random subset of the training data: draw a bootstrap
sample of size N (instance is out-of-bag with probability 1

e ≈ 36.8%)

2. select the split only over a subset of the features in each node, draw dtry
features at random (usually dtry =

√
d). dtry must be higher when there

are many uninformative features

27 Lecture 04 / 02

27.1 Ensemble Classifiers

• train uncorrelated classifiers and take the average of their predictions (Random
Forest)

• conditional training: train classifier t so that it corrects the errors of classifiers
1, ..., (t− 1)

70these are both the maximum values respectively

81

– boosting: increase the weights of difficult instances and minimize weighted
loss

– gradient boosting: classifier t learns a gradient step from the current loss (of
ensemble (t− 1)) to the optimal solution

– cascaded classification: make easy decisions quickly and cheaply, use more
complex methods for difficult cases ⇒ early stopping in the ensemble

27.2 AdaBoost (Freund & Shapire, 1997)

• train t = 1, ..., T classifiers sequentially, g(X|θt)71 model after step t:

ft(X) = ft−1(X) + βtg(X|θt)

• prediction: ŷ = sign(fT (X))

• theory (Friedman et al. 2000): in each step, we minimize an exponential loss over
the parameters θt and weight βt, keeping θ1, ..., θt−1 and β1, ..., βt−1 fixed

Losst−1(Xi, Yi) = exp(Yift−1(Xi))

⇒ optimization problem:

(βt, θt) = argmin
β,θ

∑
i

exp(−Yi(f(t−1(Xi) + βg(Xi|θ))))

= argmin
β,θ

∑
i

w(t−1) exp(−Yiβg(Xi|θ))

w
(t−1)
i = exp(−Yift−1(Xi)) weight of instane i in training round t ⇒ high weight

for wrongly classified instances

• the optimum with respect to θ is independent of β

θt = argmin
θ

∑
i

w
(t−1)
i 1(Yi ̸= g(Xi|θ))

which is nothing else than weighted 0− 1 loss

• optimize with respect to β:

see ESL p342ff for details on the derivation etc

⇒ βt =
1
2 log

1−errt
errt

⇒ g(Xi|θt) should be a weak classifier (non-zero training error) to avoid βt → ∞.

71θt are the parameters of classifier t

82

27.3 Adaboost algorithm

• init f0(x) = 0, w
(0)
t = 1

• for t = 1, ..., T

– optimize θt = argminθ
∑

iw
(t−1)
i 1(Yi ̸= g(Xi|θ))

– compute weighted training error

– compute classifier weight

– update instance weights. It goes up for wrongly classified and down for cor-
rectly classified examples

– return fT (x)

– predict ŷ = sign(fT (x))

• popular choices for g(X|θ)
– linear classifiers

– decision stump =̂ linear classifier with one feature =̂ decision tree with one
split node (and two leaves) ⇒ very cheap, can use big T (T = 104)

27.4 Cascaded classifiers (Viola & Jones 2001)

• application: most decisions are simple (example: face detection: most boxes are
clearly no faces)

• idea:

– use cheap classifier for simple decisions and complex ones for difficult decisions

– control training so that only one type of error (e.g. false positives) occurs in
stages 1, ..., (T − 1)

• training: in each stage fix the maximum allowed false negative rate ε (=̂ missed
faces) and the allowed classifier complexity (e.g. number of features) and train to
maximize true negative rate

• prediction: most instances are classified by the first stages ⇒ average time is small

– true positive rate (1− ε)⊤

83

Overlook Here is a summary of the topics covered in the lecture

Lecture Lesson Topic

Lecture 1 First Lesson Machine Learning, Introduction and Notation, Kinds
of variables, Kinds of training data

Second Lesson Modeling and Sources of Uncertainity

Lecture 2 First Lesson Classification, How well does a decision perform?, fun-
damental methods, theoretical limits

Second Lesson How well can we perform?, Bayes decision regions, ex-
ample

Lecture 3 First Lesson Bayes Classifier, Candidate decision rules, Errors
Second Lesson Nearest Neighbor Classifier: intuitive definition, How

well does this work?, empirical estimation (two-fold
cross validation) , asymptotic theory

Lecture 4 First Lesson clustering algorithms, Quadratic and Linear Dis-
criminant Analysis (Introduction), QDA: generative
method

Second Lesson fundamental meta-algorithm for training in ML, QDA:
model, objective function, optimization, result, pre-
diction

Lecture 5 First Lesson QDA: Summary, LDA: prediction rule, case C = 2,
intuitive meaning

Second Lesson LDA: general prediction rule

Lecture 6 First Lesson Logistic Regression, maximum likelihood principle,
Second Lesson determine weights w by minimizing the negative log-

posterior of the training data, stochastic gradient de-
scent

Lecture 7 First Lesson Histograms and Density Trees: (lecture so far, sum-
mary),

Second Lesson Histograms, curse of dimensionality

Lecture 8 First Lesson How to generalize histograms to high dimensional
value spaces, best split criterion

Second Lesson split criterion, prediction, improve performance, en-
semble

84

Lecture 9 First Lesson Regression: Zoo of methods
Second Lesson Ordinary Least Squares: model, task, example (fitting

in 2D), general case, formal solution

Lecture 10 First Lesson When to use what: Cholesky, application - tomogra-
phy

Second Lesson weighted least squares

Lecture 11 First Lesson Total Least Squares: introductory example, correc-
tion matrix, task, Constrained / Regularized Least
Squares, Ridge Regression

Second Lesson Solve non-linear regression problems via linear least-
squares

Lecture 12 First Lesson Kernel Ridge Regression: prediction via the dual,
Second Lesson examples, parameter selection, gaussian Kernel, ad-

vantages

Lecture 13 First Lesson Regularized / Constrained Regression purpose of reg-
ularization, ridge regression, sparse regression, exam-
ple, method 1 L0-regression

Second Lesson method 2 L1-regression, non-linear regression (method
1, 2, 3)

Lecture 14 First Lesson Robust Regression
Second Lesson RANSAC - Algorithm

Lecture 15 First Lesson Risk, Loss and Optimism or How to judge the quality
of predictions?

Second Lesson

Lecture 16 First Lesson Evaluate the model: loss function, training error, sam-
ple a test set

Second Lesson

Lecture 17 First Lesson How to determine optimism and / or predict test error:
empirical estimates, analytical estimates

Second Lesson

Lecture 18 First Lesson Variants of PCA: non-negative matrix factorization,
algorithm, initial guess

Second Lesson example: face representation, independent component
analysis (ICA), fast ICA, robust PCA,

Lecture 19 First Lesson Non-linear dimension reduction
Second Lesson example: face representation, independent component

analysis (ICA), fast ICA, robust PCA,

85

