Publications

Export 699 results:
Author Title Type [ Year(Desc)]
Filters: First Letter Of Last Name is H  [Clear All Filters]
2014
X. Lou, Schiegg, M., and Hamprecht, F. A., Active Structured Learning for Cell Tracking: Algorithm, Framework and Usability, IEEE Transactions on Medical Imaging, vol. 33 (4), pp. 849-860, 2014.PDF icon Technical Report (6.84 MB)
M. Horn, Arriving at Z / f, pp. 1–2, 2014.
T. Kröger, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Asymmetric Cuts: Joint Image Labeling and Partitioning, in Pattern Recognition - 36th German Conference, {GCPR} 2014, Münster, Germany, September 2-5, 2014, Proceedings, 2014.PDF icon Technical Report (3.46 MB)
T. Kröger, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Asymmetric Cuts: Joint Image Labeling and Partitioning, in 36th German Conference on Pattern Recognition, 2014.
A. - S. Wahl, Omlor, W., Rubio, J. C., Chen, J. L., Zheng, H., Schröter, A., Gullo, M., Weinmann, O., Kobayashi, K., Helmchen, F., Ommer, B., and Schwab, M. E., Asynchronous Therapy Restores Motor Control by Rewiring of the Rat Corticospinal Tract after Stroke, Science, vol. 344, p. 1250--1255, 2014.
B. F. Tek, Kröger, T., Mikula, S., and Hamprecht, F. A., Automated Cell Nucleus Detection for Large-Volume Electron Microscopy of Neural Tissue, in ISBI. Proceedings, 2014, pp. 69-72.PDF icon Technical Report (533.92 KB)
A. Kreshuk, Köthe, U., Pax, E., Bock, D. D., and Hamprecht, F. A., Automated Detection of Synapses in Serial Section Transmission Electron Microscopy Image Stacks, PLoS ONE, vol. 9, p. 2, 2014.PDF icon Technical Report (16.66 MB)
C. Zhang, Yarkony, J., and Hamprecht, F. A., Cell detection and segmentation using correlation clustering, in MICCAI. Proceedings, 2014, pp. 9-16.PDF icon Technical Report (8.06 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, CoRR, 2014.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, CoRR, vol. abs/1404.0533, 2014.PDF icon Technical Report (3.32 MB)
M. Kandemir and Hamprecht, F. A., Computer-aided diagnosis from weak supervision: A benchmarking study, Computerized Medical Imaging and Graphics, vol. 42, pp. 44-50, 2014.PDF icon Technical Report (4.28 MB)
L. Maier-Hein, Mersmann, S., Kondermann, D., Stock, C., Kenngott, H., Sanchez, A., Wagner, M., Preukschas, A., Wekerle, A. - L., Helfert, S., Bodenstedt, S., and Speidel, S., Crowdsourcing for reference correspondence generation in endoscopic images, in MICCAI, 2014.
T. Beier, Kröger, T., Kappes, J. H., Köthe, U., and Hamprecht, F. A., Cut, Glue and Cut: A Fast, Approximate Solver for Multicut Partitioning, in 2014 {IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2014, Columbus, OH, USA, June 23-28, 2014, 2014.PDF icon Technical Report (10.06 MB)
C. Decker and Hamprecht, F. A., Detecting individual body parts improves mouse behavior classification, in Workshop on visual observation and analysis of Vertebrate And Insect Behavior (VAIB), 22nd International Conference on Pattern Recognition (ICPR). Proceedings, 2014.PDF icon Technical Report (1.48 MB)
E. Eyjolfsdottir, Branson, S., Burgos-Artizzu, X. P., Hoopfer, E. D., Schor, J., Anderson, D. J., and Perona, P., Detection of social actions in fruit flies, Lecture Notes in Computer Science, vol. 8690, pp. 772–787, 2014.
M. Kandemir, Feuchtinger, A., Walch, A., and Hamprecht, F. A., Digital Pathology: Multiple instance learning can detect Barrett'scancer, ISBI. Proceedings. pp. 1348-1351, 2014.PDF icon Technical Report (2.86 MB)
M. Kandemir, Zhang, C., and Hamprecht, F. A., Empowering multiple instance histopathology cancer diagnosis by cell graphs, in MICCAI. Proceedings, 2014, vol. 8674, pp. 228-235.PDF icon Technical Report (1.76 MB)
M. Kandemir, Rubio, J. C., Schmidt, U., Wojek, C., Welbl, J., Ommer, B., and Hamprecht, F. A., Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures, in Medical Image Computing and Computer-Assisted Intervention, 2014, p. 154--161.PDF icon Technical Report (2 MB)
M. Kandemir, Rubio, J. C., Schmidt, U., Welbl, J., Ommer, B., and Hamprecht, F. A., Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures, in MICCAI. Proceedings, 2014, pp. 154-161.PDF icon Paper (2 MB)
R. Lindner, Lou, X., Reinstein, J., Shoeman, R. L., Hamprecht, F. A., and Winkler, A., Hexicon 2: Automated Processing of Hydrogen-Deuterium Exchange Mass Spectrometry Data with Improved Deuteration Distribution Estimation, Journal of The American Society for Mass Spectrometry, vol. 25, pp. 1018-1028, 2014.PDF icon Technical Report (2.1 MB)
M. Hornáček, Besse, F., Kautz, J., Fitzgibbon, A., and Rother, C., Highly overparameterized optical flow using PatchMatch belief propagation, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, vol. 8691 LNCS, pp. 220–234.
J. Kleesiek, Biller, A., Urban, G., Köthe, U., Bendszus, M., and Hamprecht, F. A., ilastik for Multi-modal Brain Tumor Segmentation, in MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, 3rdplace, 2014, pp. 12-17.PDF icon Technical Report (405.91 KB)
M. Kandemir and Hamprecht, F. A., Instance Label Prediction by Dirichlet Process Multiple Instance Learning, in UAI. Proceedings, 2014.PDF icon Technical Report (4.26 MB)
M. Hoai, Torresani, L., De La Torre, F., and Rother, C., Learning discriminative localization from weakly labeled data, in Pattern Recognition, 2014, vol. 47, pp. 1523–1534.
E. Mesarchaki, Kräuter, C., Krall, K. Ellen, Bopp, M., Helleis, F., Williams, J., and Jähne, B., Measuring air-sea gas exchange velocities in a large scale annular wind-wave tank, Ocean Sci. Discuss., vol. 11, p. 1643--1689, 2014.
G. Urban, Bendszus, M., Hamprecht, F. A., and Kleesiek, J., Multi-modal Brain Tumor Segmentation using Deep Convolutional NeuralNetworks, in MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winningcontribution, 2014, pp. 31-35.
C. N. Straehle, Kandemir, M., Köthe, U., and Hamprecht, F. A., Multiple instance learning with response-optimized random forests, in ICPR. Proceedings, 2014, pp. 3768 - 3773.PDF icon Technical Report (296.66 KB)
J. Yarkony, Beier, T., Baldi, P., and Hamprecht, F. A., Parallel Multicut Segmentation via Dual Decomposition, in New Frontiers in Mining Complex Patterns - Third International Workshop, {NFMCP} 2014, Held in Conjunction with {ECML-PKDD} 2014, Nancy, France, September 19, 2014, Revised Selected Papers, 2014.
J. Esparza, Vepa, L., Helmle, M., and Jähne, B., Registration of a multi-camera system with a 3D laser range finder, in 9th Workshop Driver Assistance Systems (FAS2014), 26.-28.03.2014, Walting, 2014, p. 37--46.
X. He, Wang, H., Zhang, F., Wang, G., and Zhou, K., Robust Simulation of Small-Scale Thin Features in SPH-based Free Surface Flows, Life.Kunzhou.Net, vol. 1, pp. 1–8, 2014.
B. Maco, Cantoni, M., Holtmaat, A., Kreshuk, A., Hamprecht, F. A., and Knott, G. W., Semiautomated Correlative 3D Electron Microscopy of In Vivo Imaged Axons and Dendrites, Nature Protocols, vol. 9, pp. 1354-1366, 2014.PDF icon Technical Report (2.01 MB)
B. Maco, Cantoni, M., Holtmaat, A., Kreshuk, A., Hamprecht, F. A., and Knott, G. W., Semiautomated Correlative 3D Electron Microscopy of In Vivo Imaged Axons and Dendrites, Nature Protocols, vol. 9, pp. 1354-1366, 2014.PDF icon Technical Report (2.01 MB)

Pages