Publications

Export 699 results:
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is H  [Clear All Filters]
2017
M. Haußmann, Hamprecht, F. A., and Kandemir, M., Variational Bayesian Multiple Instance Learning with Gaussian Processes, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 6570-6579, 2017.PDF icon Technical Report (1.29 MB)
2016
B. Güssefeld, Honauer, K., and Kondermann, D., Creating Feasible Reflectance Data for Synthetic Optical Flow Datasets, in Advances in Visual Computing - 12th International Symposium, {ISVC} 2016, Las Vegas, NV, USA, December 12-14, 2016, Proceedings, Part {I}, 2016.
K. Honauer, Johannsen, O., Kondermann, D., and Goldlücke, B., A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields, in Computer Vision - ACCV 2016 : 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part III, Cham, 2016.
J. Kleesiek, Urban, G., Hubert, A., Schwarz, D., Maier-Hein, K., Bendszus, M., and Biller, A., Deep MRI brain extraction: A 3D convolutional neural network for skull stripping., NeuroImage, vol. 129, pp. 460-469, 2016.PDF icon Technical Report (1.14 MB)
T. Beier, Andres, B., Köthe, U., and Hamprecht, F. A., An Efficient Fusion Move Algorithm for the Minimum Cost Lifted Multicut Problem, ECCV. Proceedings, vol. LNCS 9906. Springer, pp. 715-730, 2016.PDF icon Technical Report (4.89 MB)
M. von Borstel, Kandemir, M., Schmidt, P., Rao, M., Rajamani, K., and Hamprecht, F. A., Gaussian process density counting from weak supervision, ECCV. Proceedings, vol. LNCS 9905. Springer, pp. 365-380 , 2016.PDF icon Technical Report (1.71 MB)
C. Haubold, Ales, J., Wolf, S., and Hamprecht, F. A., A Generalized Successive Shortest Paths Solver for Tracking Dividing Targets, ECCV. Proceedings, vol. LNCS 9911. Springer, pp. 566-582, 2016.PDF icon Technical Report (1.18 MB)
C. Haubold, Ales, J., Wolf, S., and Hamprecht, F. A., A Generalized Successive Shortest Paths Solver for Tracking Dividing Targets, ECCV. Proceedings, vol. LNCS 9911. Springer, pp. 566-582, 2016.PDF icon Technical Report (1.18 MB)
D. Kondermann, Nair, R., Honauer, K., Krispin, K., Andrulis, J., Brock, A., Güssefeld, B., Rahimimoghaddam, M., Hofmann, S., Brenner, C., and Jähne, B., The HCI Benchmark Suite: Stereo and Flow Ground Truth With Uncertainties for Urban Autonomous Driving, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2016.
D. Kondermann, Nair, R., Honauer, K., Krispin, K., Andrulis, J., Brock, A., Güssefeld, B., Rahimimoghaddam, M., Hofmann, S., Brenner, C., and Jähne, B., The HCI Benchmark Suite: Stereo and Flow Ground Truth With Uncertainties for Urban Autonomous Driving, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2016.
E. Meijering, Carpenter, A. E., Peng, H., Hamprecht, F. A., and Olivo-Marin, J., Imagining the future of bioimage analysis, Nature Biotechnology, vol. 34, no. 12, pp. 1250-1255, 2016.PDF icon Technical Report (924.57 KB)
A. Biller, Badde, S., Nagel, A., Neumann, J. O., Wick, W., Hertenstein, A., Bendszus, M., Sahm, F., Benkhedah, N., and Kleesiek, J., Improved Brain Tumor Classification by Sodium MR Imaging: Prediction of IDH Mutation Status and Tumor Progression, American Journal of Neuroradiology, vol. 37 , pp. 66-73, 2016.
M. Schiegg, Diego, F., and Hamprecht, F. A., Learning Diverse Models: The Coulomb Structured Support Vector Machine, ECCV. Proceedings, vol. LNCS 9907. Springer, pp. 585-599, 2016.PDF icon Technical Report (2.54 MB)
J. Hendrik Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Multicuts and Perturb & MAP for Probabilistic Graph Clustering, Journal of Mathematical Imaging and Vision, vol. 56, pp. 221–237, 2016.
J. H. Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Multicuts and Perturb & MAP for Probabilistic Graph Clustering, J. Math. Imag. Vision, vol. 56, pp. 221–237, 2016.
O. Hosseini Jafari and Yang, M. Ying, Real-time RGB-D based template matching pedestrian detection, in Proceedings - IEEE International Conference on Robotics and Automation, 2016, vol. 2016-June, pp. 5520–5527.
C. Haubold, Schiegg, M., Kreshuk, A., Berg, S., Köthe, U., and Hamprecht, F. A., Segmenting and Tracking Multiple Dividing Targets Using ilastik, in Focus on Bio-Image Informatics, vol. 219, Springer, 2016, pp. 199-229.PDF icon Technical Report (4.46 MB)
C. Haubold, Schiegg, M., Kreshuk, A., Berg, S., Köthe, U., and Hamprecht, F. A., Segmenting and Tracking Multiple Dividing Targets Using ilastik, in Focus on Bio-Image Informatics, vol. 219, Springer, 2016, pp. 199-229.PDF icon Technical Report (4.46 MB)
F. Diego and Hamprecht, F. A., Structured Regression Gradient Boosting, CVPR. Proceedings. pp. 1459-1467, 2016.PDF icon Technical Report (3.97 MB)
M. Kandemir, Haußmann, M., Diego, F., Rajamani, K., van der Laak, J., and Hamprecht, F. A., Variational weakly-supervised Gaussian processes, BMVC. Proceedings. 2016.PDF icon Technical Report (3.28 MB)
M. Kandemir, Haußmann, M., Diego, F., Rajamani, K., van der Laak, J., and Hamprecht, F. A., Variational weakly-supervised Gaussian processes, BMVC. Proceedings. 2016.PDF icon Technical Report (3.28 MB)
J. Kleesiek, Petersen, J., Döring, M., Maier-Hein, K., Köthe, U., Wick, W., Hamprecht, F. A., Bendszus, M., and Biller, A., Virtual Raters for Reproducible and Objective Assessments in Radiology, Nature Scientific Reports, vol. 6, 2016.PDF icon Technical Report (2.81 MB)
M. Haußmann, Weakly Supervised Detection with Gaussian Processes, University of Heidelberg, 2016.
2015
A. Kreshuk, Walecki, R., Köthe, U., Gierthmühlen, M., Plachta, D., Genoud, C., Haastert-Talini, K., and Hamprecht, F. A., Automated Tracing of Myelinated Axons and Detection of the Nodes of Ranvier in Serial Images of Peripheral Nerves, Journal of Microscopy, vol. 259 (2), pp. 143-154, 2015.
A. Kreshuk, Walecki, R., Köthe, U., Gierthmühlen, M., Plachta, D., Genoud, C., Haastert-Talini, K., and Hamprecht, F. A., Automated Tracing of Myelinated Axons and Detection of the Nodes of Ranvier in Serial Images of Peripheral Nerves, Journal of Microscopy, vol. 259 (2), pp. 143-154, 2015.
M. Kandemir and Hamprecht, F. A., Cell event detection in phase-contrast microscopy sequences from few annotations, MICCAI. Proceedings, vol. LNCS 9351. Springer, pp. 316-323, 2015.PDF icon Technical Report (564.69 KB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, pp. 1-30, 2015.PDF icon Technical Report (1.5 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, Int.~J.~Comp.~Vision, 2015.PDF icon Technical Report (5.12 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
M. Kandemir and Hamprecht, F. A., The Deep Feed-Forward Gaussian Process: An Effective Generalization to Covariance Priors, NIPS. Proceedings, vol. 44. pp. 145-159, 2015.PDF icon Supplementary Material (223.39 KB)PDF icon Technical Report (2.58 MB)
T. Beier, Hamprecht, F. A., and Kappes, J. H., Fusion Moves for Correlation Clustering, in CVPR. Proceedings, 2015, pp. 3507-3516.PDF icon Technical Report (1.19 MB)
M. Schiegg, Hanslovsky, P., Haubold, C., Köthe, U., Hufnagel, L., and Hamprecht, F. A., Graphical Model for Joint Segmentation and Tracking of Multiple Dividing Cell, Bioinformatics, vol. 31, no. 6, pp. 948-956, 2015.PDF icon Technical Report (534.29 KB)
M. Schiegg, Hanslovsky, P., Haubold, C., Köthe, U., Hufnagel, L., and Hamprecht, F. A., Graphical Model for Joint Segmentation and Tracking of Multiple Dividing Cell, Bioinformatics, vol. 31, no. 6, pp. 948-956, 2015.PDF icon Technical Report (534.29 KB)

Pages