2016
L. A. Royer, Richmond, D. L., Rother, C., Andres, B., and Kainmueller, D.,
“Convexity shape constraints for image segmentation”, in
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016, vol. 2016-Decem, pp. 402–410.
B. Güssefeld, Honauer, K., and Kondermann, D.,
“Creating Feasible Reflectance Data for Synthetic Optical Flow Datasets”, in
Advances in Visual Computing - 12th International Symposium, {ISVC} 2016, Las Vegas, NV, USA, December 12-14, 2016, Proceedings, Part {I}, 2016.
K. Honauer, Johannsen, O., Kondermann, D., and Goldlücke, B.,
“A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields”, in
Computer Vision - ACCV 2016 : 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part III, Cham, 2016.
J. Kleesiek, Urban, G., Hubert, A., Schwarz, D., Maier-Hein, K., Bendszus, M., and Biller, A.,
“Deep MRI brain extraction: A 3D convolutional neural network for skull stripping.”,
NeuroImage, vol. 129, pp. 460-469, 2016.
Technical Report (1.14 MB) T. Beier, Andres, B., Köthe, U., and Hamprecht, F. A.,
“An Efficient Fusion Move Algorithm for the Minimum Cost Lifted Multicut Problem”,
ECCV. Proceedings, vol. LNCS 9906. Springer, pp. 715-730, 2016.
Technical Report (4.89 MB) M. von Borstel, Kandemir, M., Schmidt, P., Rao, M., Rajamani, K., and Hamprecht, F. A.,
“Gaussian process density counting from weak supervision”,
ECCV. Proceedings, vol. LNCS 9905. Springer, pp. 365-380 , 2016.
Technical Report (1.71 MB) D. Kondermann, Nair, R., Honauer, K., Krispin, K., Andrulis, J., Brock, A., Güssefeld, B., Rahimimoghaddam, M., Hofmann, S., Brenner, C., and Jähne, B.,
“The HCI Benchmark Suite: Stereo and Flow Ground Truth With Uncertainties for Urban Autonomous Driving”, in
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2016.
D. Kondermann, Nair, R., Honauer, K., Krispin, K., Andrulis, J., Brock, A., Güssefeld, B., Rahimimoghaddam, M., Hofmann, S., Brenner, C., and Jähne, B.,
“The HCI Benchmark Suite: Stereo and Flow Ground Truth With Uncertainties for Urban Autonomous Driving”, in
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2016.
J. Kappes, Speth, M., Reinelt, G., and Schnörr, C.,
“Higher-order Segmentation via Multicuts”,
Comp. Vision Image Understanding, vol. 143, pp. 104–119, 2016.
A. Biller, Badde, S., Nagel, A., Neumann, J. O., Wick, W., Hertenstein, A., Bendszus, M., Sahm, F., Benkhedah, N., and Kleesiek, J.,
“Improved Brain Tumor Classification by Sodium MR Imaging: Prediction of IDH Mutation Status and Tumor Progression”,
American Journal of Neuroradiology, vol. 37 , pp. 66-73, 2016.
D. L. Richmond, Kainmueller, D., Yang, M. Y., Myers, E. W., and Rother, C.,
“Mapping auto-context decision forests to deep convnets for semantic segmentation”, in
British Machine Vision Conference 2016, BMVC 2016, 2016, vol. 2016-Septe, pp. 144.1–144.12.
D. L. Richmond, Kainmueller, D., Yang, M. Y., Myers, E. W., and Rother, C.,
“Mapping auto-context decision forests to deep convnets for semantic segmentation”, in
British Machine Vision Conference 2016, BMVC 2016, 2016, vol. 2016-Septe, pp. 144.1–144.12.
D. L. Richmond, Kainmueller, D., Yang, M. Y., Myers, E. W., and Rother, C.,
“Mapping auto-context decision forests to deep convnets for semantic segmentation”, in
British Machine Vision Conference 2016, BMVC 2016, 2016, vol. 2016-Septe, pp. 144.1–144.12.
J. H. Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C.,
“Multicuts and Perturb & MAP for Probabilistic Graph Clustering”,
J. Math. Imag. Vision, vol. 56, pp. 221–237, 2016.
J. Hendrik Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C.,
“Multicuts and Perturb & MAP for Probabilistic Graph Clustering”,
Journal of Mathematical Imaging and Vision, vol. 56, pp. 221–237, 2016.
M. Zisler, Kappes, J. H., Schnörr, C., Petra, S., and Schnörr, C.,
“Non-Binary Discrete Tomography by Continuous Non-Convex Optimization”,
IEEE Comp. Imaging, vol. 2, pp. 335-347, 2016.
P. Swoboda, Shekhovtsov, A., Kappes, J. H., Schnörr, C., and Savchynskyy, B.,
“Partial Optimality by Pruning for MAP-Inference with General Graphical Models”,
IEEE Trans. Patt. Anal. Mach. Intell., vol. 38, pp. 1370–1382, 2016.
P. Swoboda, Shekhovtsov, A., Kappes, J. Hendrik, Schnörr, C., and Savchynskyy, B.,
“Partial Optimality by Pruning for MAP-Inference with General Graphical Models”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, pp. 1370–1382, 2016.
C. Haubold, Schiegg, M., Kreshuk, A., Berg, S., Köthe, U., and Hamprecht, F. A.,
“Segmenting and Tracking Multiple Dividing Targets Using ilastik”, in
Focus on Bio-Image Informatics, vol. 219, Springer, 2016, pp. 199-229.
Technical Report (4.46 MB) C. Haubold, Schiegg, M., Kreshuk, A., Berg, S., Köthe, U., and Hamprecht, F. A.,
“Segmenting and Tracking Multiple Dividing Targets Using ilastik”, in
Focus on Bio-Image Informatics, vol. 219, Springer, 2016, pp. 199-229.
Technical Report (4.46 MB) E. Brachmann, Michel, F., Krull, A., Yang, M. Ying, Gumhold, S., and Rother, C.,
“Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image”, in
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016, vol. 2016-Decem, pp. 3364–3372.
E. Brachmann, Michel, F., Krull, A., Yang, M. Ying, Gumhold, S., and Rother, C.,
“Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image”, in
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016, vol. 2016-Decem, pp. 3364–3372.
M. Kandemir, Haußmann, M., Diego, F., Rajamani, K., van der Laak, J., and Hamprecht, F. A.,
“Variational weakly-supervised Gaussian processes”,
BMVC. Proceedings. 2016.
Technical Report (3.28 MB)