Publications

Export 494 results:
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is R  [Clear All Filters]
2019
C. Kamann and Rother, C., Benchmarking the Robustness of Semantic Segmentation Models, 2019.
J. Kleesiek, Morshuis, J. Nikolas, Isensee, F., Deike-Hofmann, K., Paech, D., Kickingereder, P., Köthe, U., Rother, C., Forsting, M., Wick, W., Bendszus, M., Schlemmer, H. Peter, and Radbruch, A., Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study, Investigative Radiology, vol. 54, pp. 653–660, 2019.
J. Kleesiek, Morshuis, J. Nikolas, Isensee, F., Deike-Hofmann, K., Paech, D., Kickingereder, P., Köthe, U., Rother, C., Forsting, M., Wick, W., Bendszus, M., Schlemmer, H. Peter, and Radbruch, A., Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study, Investigative Radiology, vol. 54, pp. 653–660, 2019.
R. Mackowiak, Lenz, P., Ghori, O., Diego, F., Lange, O., and Rother, C., CEREALS - Cost-Effective REgion-based Active Learning for Semantic Segmentation, in British Machine Vision Conference 2018, BMVC 2018, 2019.
W. Li, Hosseini Jafari, O., and Rother, C., Deep Object Co-segmentation, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, vol. 11363 LNCS, pp. 638–653.
A. Imle, Kumberger, P., Schnellbächer, N. D., Fehr, J., Carillo-Bustamente, P., Ales, J., Schmidt, P., Ritter, C., Godinez, W. J., Müller, B., Rohr, K., Hamprecht, F. A., Schwarz, U. S., Graw, F., and Fackler, O. T., Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures, Nature Communications, vol. 13;10(1), 2019.
A. Imle, Kumberger, P., Schnellbächer, N. D., Fehr, J., Carillo-Bustamente, P., Ales, J., Schmidt, P., Ritter, C., Godinez, W. J., Müller, B., Rohr, K., Hamprecht, F. A., Schwarz, U. S., Graw, F., and Fackler, O. T., Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures, Nature Communications, vol. 13;10(1), 2019.
E. Brachmann and Rother, C., Expert sample consensus applied to camera re-localization, in Proceedings of the IEEE International Conference on Computer Vision, 2019, vol. 2019-Octob, pp. 7524–7533.
F. Rathke and Schnörr, C., Fast Multivariate Log-Concave Density Estimation, Comp. Statistics & Data Analysis, vol. 140, pp. 41-58, 2019.
F. Rathke and Schnörr, C., Fast Multivariate Log-Concave Density Estimation, Comp. Statistics & Data Analysis, vol. 140, pp. 41–58, 2019.
H. Abu Alhaija, Mustikovela, S. Karthik, Geiger, A., and Rother, C., Geometric Image Synthesis, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, vol. 11366 LNCS, pp. 85–100.
L. Kostrykin, Schnörr, C., and Rohr, K., Globally Optimal Segmentation of Cell Nuclei in Fluoroscence Microscopy Images using Shape and Intensity Information, Medical Image Analysis, 2019.
L. Ardizzone, Lüth, C., Kruse, J., Rother, C., and Köthe, U., Guided Image Generation with Conditional Invertible Neural Networks, 2019.
L. Ardizzone, Lüth, C., Kruse, J., Rother, C., and Köthe, U., Guided Image Generation with Conditional Invertible Neural Networks, 2019.
S. Berg, Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., Schiegg, M., Ales, J., Beier, T., Rudy, M., Eren, K., Cervantes, J. I., Xu, B., Beuttenmüller, F., Wolny, A., Zhang, C., Köthe, U., Hamprecht, F. A., and Kreshuk, A., ilastik: interactive machine learning for (bio)image analysis, Nature Methods, vol. 16, pp. 1226-1232, 2019.
R. Remme, Instance Segmentation via Associative Pixel Embeddings, Heidelberg University, 2019.
O. Hosseini Jafari, Mustikovela, S. Karthik, Pertsch, K., Brachmann, E., and Rother, C., iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, vol. 11363 LNCS, pp. 477–492.
T. Leistner, Schilling, H., Mackowiak, R., Gumhold, S., and Rother, C., Learning to Think Outside the Box: Wide-Baseline Light Field Depth Estimation with EPI-Shift, in Proceedings - 2019 International Conference on 3D Vision, 3DV 2019, 2019, pp. 249–257.PDF icon PDF (8.94 MB)
W. Li, Hosseini Jafari, O., and Rother, C., Localizing Common Objects Using Common Component Activation Map, 2019.
Y. Bengio, Deleu, T., Rahaman, N., Ke, R., Lachapelle, S., Bilaniuk, O., Goyal, A., and Pal, C., A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms, arXiv preprint arXiv:1901.10912, 2019.PDF icon Technical Report (871.59 KB)
B. Brattoli, Roth, K., and Ommer, B., MIC: Mining Interclass Characteristics for Improved Metric Learning, in Proceedings of the Intl. Conf. on Computer Vision (ICCV), 2019.
E. Brachmann and Rother, C., Neural-guided RANSAC: Learning where to sample model hypotheses, in Proceedings of the IEEE International Conference on Computer Vision, 2019, vol. 2019-Octob, pp. 4321–4330.PDF icon PDF (8.02 MB)
A. Ravindran, Novel Deep Learning-based Instance Segmentation Using Mutex Watershed for Microscopy Cell Images, Heidelberg University, 2019.
T. J. Adler, Ayala, L., Ardizzone, L., Kenngott, H. G., Vemuri, A., Müller-Stich, B. P., Rother, C., Köthe, U., and Maier-Hein, L., Out of Distribution Detection for Intra-operative Functional Imaging, in MICCAI UNSURE Workshop 2019, 2019, vol. 11840 LNCS, pp. 75–82.PDF icon PDF (3.1 MB)
A. Bhowmik, Gumhold, S., Rother, C., and Brachmann, E., Reinforced Feature Points: Optimizing Feature Detection and Description for a High-Level Task, 2019.
2018
H. Abu Alhaija, Mustikovela, S. Karthik, Mescheder, L., Geiger, A., and Rother, C., Augmented Reality Meets Computer Vision, International Journal of Computer Vision, vol. In press, pp. 1–13, 2018.
H. Abu Alhaija, Mustikovela, S. K., Mescheder, A., Geiger, C., and Rother, C., Augmented Reality Meets Computer Vision Efficient Data Generation for Urban Driving Scenes, IJCV, pp. 1-12, 2018.PDF icon Technical Report (3.83 MB)
H. Abu Alhaija, Mustikovela, S. Karthik, Mescheder, L., Geiger, A., and Rother, C., Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes, International Journal of Computer Vision, vol. 126, pp. 961–972, 2018.
T. Hodaň, Michel, F., Brachmann, E., Kehl, W., Buch, A. Glent, Kraft, D., Drost, B., Vidal, J., Ihrke, S., Zabulis, X., Sahin, C., Manhardt, F., Tombari, F., Kim, T. Kyun, Matas, J., and Rother, C., BOP: Benchmark for 6D object pose estimation, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11214 LNCS, pp. 19–35.
A. Arnab, Zheng, S., Jayasumana, S., Romera-paredes, B., Kirillov, A., Savchynskyy, B., Rother, C., Kahl, F., and Torr, P., Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation, Cvpr, vol. XX, pp. 1–15, 2018.
A. Arnab, Zheng, S., Jayasumana, S., Romera-paredes, B., Kirillov, A., Savchynskyy, B., Rother, C., Kahl, F., and Torr, P., Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation, Cvpr, vol. XX, pp. 1–15, 2018.
F. Rathke and Schnörr, C., Fast Multivariate Log-Concave Density Estimation, preprint: ArXiv, 2018.PDF icon Technical Report (3.54 MB)
F. Rathke and Schnörr, C., Fast Multivariate Log-Concave Density Estimation, preprint: arXiv, 2018.
D. Fortun, Storath, M., Rickert, D., Weinmann, A., and Unser, M., Fast Piecewise-Affine Motion Estimation Without Segmentation, IEEE Transactions on Image Processing, vol. 27 , no. 11, pp. 5612 - 5624, 2018.
A. Zern, Rohr, K., and Schnörr, C., Geometric Image Labeling with Global Convex Labeling Constraints, in EMMCVPR, 2018, vol. 10746, pp. 533–547.

Pages