Publications

Export 1229 results:
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is S  [Clear All Filters]
2013
C. N. Straehle, Peter, S., Köthe, U., and Hamprecht, F. A., K-smallest Spanning Tree Segmentations, in German Conference on Pattern Recognition (DAGM/GCPR). Proceedings, 2013, pp. 375-384.PDF icon Technical Report (1.18 MB)
B. Schmitzer and Schnörr, C., Modelling convex shape priors and matching based on the Gromov-Wasserstein distance, Journal of Mathematical Imaging and Vision, vol. 46, pp. 143-159, 2013.
B. Schmitzer and Schnörr, C., Modelling convex shape priors and matching based on the Gromov-Wasserstein distance, Journal of Mathematical Imaging and Vision, vol. 46, pp. 143-159, 2013.
B. Schmitzer and Schnörr, C., Modelling convex shape priors and matching based on the Gromov-Wasserstein distance, Journal of Mathematical Imaging and Vision, vol. 46, pp. 143-159, 2013.PDF icon Technical Report (957.78 KB)
B. Schmitzer and Schnörr, C., Modelling convex shape priors and matching based on the Gromov-Wasserstein distance, Journal of Mathematical Imaging and Vision, vol. 46, pp. 143-159, 2013.PDF icon Technical Report (957.78 KB)
P. Bell, Schlecht, J., and Ommer, B., Nonverbal Communication in Medieval Illustrations Revisited by Computer Vision and Art History, Visual Resources Journal, Special Issue on Digital Art History, vol. 29, p. 26--37, 2013.
B. Schmitzer and Schnörr, C., Object Segmentation by Shape Matching with Wasserstein Modes, in Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2013), 2013, pp. 123-136.
B. Schmitzer and Schnörr, C., Object Segmentation by Shape Matching with Wasserstein Modes, in Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2013), 2013, pp. 123-136.
J. Lellmann, Lenzen, F., and Schnörr, C., Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem, Journal of Mathematical Imaging and Vision, vol. 47 (3), pp. 239-257, 2013.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision SSVM, 2013, pp. 477-488.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision SSVM, 2013, pp. 477-488.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision SSVM, 2013, pp. 477-488.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Scale Space and Variational Methods (SSVM 2013), 2013.PDF icon Technical Report (159.71 KB)
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Scale Space and Variational Methods (SSVM 2013), 2013.PDF icon Technical Report (159.71 KB)
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Scale Space and Variational Methods (SSVM 2013), 2013.PDF icon Technical Report (159.71 KB)
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Scale Space and Variational Methods (SSVM 2013), 2013.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Scale Space and Variational Methods (SSVM 2013), 2013.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Scale Space and Variational Methods (SSVM 2013), 2013.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Persistency by Pruning for General Graphical Models, in submitted to NIPS 2013., 2013.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Persistency by Pruning for General Graphical Models, in submitted to NIPS 2013., 2013.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Persistency by Pruning for General Graphical Models, in submitted to NIPS 2013., 2013.
R. Nair, Ruhl, K., Lenzen, F., Meister, S., Schäfer, H., Garbe, C. S., Eisemann, M., Magnor, M., and Kondermann, D., A Survey on Time-of-Flight Stereo Fusion, Time-of-Flight and Depth Imaging: Sensors, Algorithms, and Applications, vol. 8200. Springer, pp. 105-127, 2013.
R. Nair, Ruhl, K., Lenzen, F., Meister, S., Schäfer, H., Garbe, C. S., Eisemann, M., and Kondermann, D., A Survey on Time-of-Flight Stereo Fusion, in Time-of-Flight Imaging: Algorithms, Sensors and Applications, 2013, vol. 8022, pp. 105-127.
R. Nair, Ruhl, K., Lenzen, F., Meister, S., Schäfer, H., Garbe, C. S., Eisemann, M., Magnor, M., and Kondermann, D., A Survey on Time-of-Flight Stereo Fusion, Time-of-Flight and Depth Imaging: Sensors, Algorithms, and Applications, vol. 8200. Springer, pp. 105-127, 2013.PDF icon Technical Report (6.05 MB)
D. Lefloch, Nair, R., Lenzen, F., Schäfer, H., Streeter, L., Cree, M. J., Koch, R., and Kolb, A., Technical Foundation and Calibration Methods for Time-of-Flight Cameras, Time-of-Flight and Depth Imaging: Sensors, Algorithms, and Applications, vol. 8200. Springer, pp. 3-24, 2013.
D. Lefloch, Nair, R., Lenzen, F., Schäfer, H., Streeter, L., and Cree, M. J., Technical Foundation and Calibration Methods for Time-of-Flight Cameras, in Time-of-Flight Imaging: Algorithms, Sensors and Applications, 2013, vol. 8200.
D. Lefloch, Nair, R., Lenzen, F., Schäfer, H., Streeter, L., and Cree, M. J., Technical Foundation and Calibration Methods for Time-of-Flight Cameras, in Time-of-Flight Imaging: Algorithms, Sensors and Applications, 2013, vol. 8200.
D. Lefloch, Nair, R., Lenzen, F., Schäfer, H., Streeter, L., Cree, M. J., Koch, R., and Kolb, A., Technical Foundation and Calibration Methods for Time-of-Flight Cameras, Time-of-Flight and Depth Imaging: Sensors, Algorithms, and Applications, vol. 8200. Springer, pp. 3-24, 2013.
B. Goldlücke, Strekalovskiy, E., and Cremers, D., Tight convex relaxations for vector-valued labeling, SIAM Journal on Imaging Sciences, 2013.
J. H. Kappes, Speth, M., Reinelt, G., and Schnörr, C., Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization, in CVPR, 2013.PDF icon Technical Report (623.84 KB)
J. H. Kappes, Speth, M., Reinelt, G., and Schnörr, C., Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization, in CVPR, 2013.PDF icon Technical Report (623.84 KB)
J. H. Kappes, Speth, M., Reinelt, G., and Schnörr, C., Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization, in CVPR, 2013.
J. H. Kappes, Speth, M., Reinelt, G., and Schnörr, C., Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization, in CVPR, 2013.
P. Swoboda and Schnörr, C., Variational Image Segmentation and Cosegmentation with the Wasserstein Distance, in Energy Minimization Methods in Computer Vision and Pattern Recognition, 2013, vol. 8081, p. 321--334.PDF icon Technical Report (8.06 MB)
P. Swoboda and Schnörr, C., Variational Image Segmentation and Cosegmentation with the Wasserstein Distance, in Energy Minimization Methods in Computer Vision and Pattern Recognition, 2013, vol. 8081, p. 321--334.PDF icon Technical Report (8.06 MB)

Pages