Publications

Export 1229 results:
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is S  [Clear All Filters]
2018
S. Tourani, Shekhovtsov, A., Rother, C., and Savchynskyy, B., MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical Models, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11208 LNCS, pp. 264–281.
S. Tourani, Shekhovtsov, A., Rother, C., and Savchynskyy, B., MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical Models, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11208 LNCS, pp. 264–281.
L. Kostrykin, Schnörr, C., and Rohr, K., Segmentation of Cell Nuclei Using Intensity-Based Model Fitting and Sequential Convex Programming, in Proc. ISBI, 2018.
A. Sanakoyeu, Kotovenko, D., Lang, S., and Ommer, B., A Style-Aware Content Loss for Real-time HD Style Transfer, in Proceedings of the European Conference on Computer Vision (ECCV) (Oral), 2018.
K. Bredies, Holler, M., Storath, M., and Weinmann, A., Total Generalized Variation for Manifold-valued Data, SIAM Journal on Imaging Sciences, vol. 11, no. 3, pp. 1785 - 1848, 2018.
H. Schilling, Diebold, M., Rother, C., and Jähne, B., Trust your Model: Light Field Depth Estimation with inline Occlusion Handling, CVPR. Proceedings. 2018.PDF icon Technical Report (5.46 MB)
H. Schilling, Diebold, M., Rother, C., and Jähne, B., Trust your Model: Light Field Depth Estimation with Inline Occlusion Handling, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2018, pp. 4530–4538.
A. Zern, Zisler, M., Aström, F., Petra, S., and Schnörr, C., Unsupervised Label Learning on Manifolds by Spatially Regularized Geometric Assignment, GCPR. Proceedings. pp. 698-713, 2018.PDF icon Technical Report (5.23 MB)
A. Zern, Zisler, M., Aström, F., Petra, S., and Schnörr, C., Unsupervised Label Learning on Manifolds by Spatially Regularized Geometric Assignment, in GCPR, 2018.
P. Esser, Sutter, E., and Ommer, B., A Variational U-Net for Conditional Appearance and Shape Generation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (short Oral), 2018.
2017
M. Kandemir, Hamprecht, F. A., Wojek, C., and Schmidt, U., Active machine learning for training an event classification, Patent, Patent Number WO2017032775 A1, 2017.
R. Dalitz, Petra, S., and Schnörr, C., Compressed Motion Sensing, in Proc. SSVM, 2017, vol. 10302.
D. Schlesinger, Jug, F., Myers, G., Rother, C., and Kainmueller, D., Crowd sourcing image segmentation with iaSTAPLE, in Proceedings - International Symposium on Biomedical Imaging, 2017, pp. 401–405.
M. Bautista, Sanakoyeu, A., and Ommer, B., Deep Unsupervised Similarity Learning using Partially Ordered Sets, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.PDF icon deep_unsupervised_similarity_learning_cvpr_2017_paper.pdf (905.82 KB)
H. Schilling, Diebold, M., Gutsche, M., and Jähne, B., On the design of a fractal calibration pattern for improved camera calibration, tm - Technisches Messen, vol. 84, pp. 440–451, 2017.
E. Brachmann, Krull, A., Nowozin, S., Shotton, J., Michel, F., Gumhold, S., and Rother, C., DSAC - Differentiable RANSAC for camera localization, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 2492–2500.
M. Storath, Brandt, C., Hofmann, M., Knopp, T., Salamon, J., Weber, A., and Weinmann, A., Edge preserving and noise reducing reconstruction for magnetic particle imaging, IEEE Transactions on Medical Imaging, vol. 36, no. 1, pp. 74 - 85, 2017.PDF icon Technical Report (1.43 MB)
M. Storath, Brandt, C., Hofmann, M., Knopp, T., Salamon, J., Weber, A., and Weinmann, A., Edge preserving and noise reducing reconstruction for magnetic particle imaging, IEEE Transactions on Medical Imaging, vol. 36, no. 1, pp. 74 - 85, 2017.PDF icon Technical Report (1.43 MB)
M. Storath, Rickert, D., Unser, M., and Weinmann, A., Fast segmentation from blurred data in 3D fluorescence microscopy, IEEE Transactions on Image Processing, vol. 26, no. 10, 2017.
F. Aström and Schnörr, C., A Geometric Approach for Color Image Regularization, Comp. Vision Image Understanding, vol. 165, pp. 43–59, 2017.
A. Zern, Rohr, K., and Schnörr, C., Geometric Image Labeling with Global Convex Labeling Constraints, in Proc. EMMCVPR, 2017.
F. Michel, Kirillov, A., Brachmann, E., Krull, A., Gumhold, S., Savchynskyy, B., and Rother, C., Global hypothesis generation for 6D object pose estimation, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 115–124.
M. Zisler, Savarino, F., Petra, S., and Schnörr, C., Gradient Flows on a Riemannian Submanifold for Discrete Tomography, in Proc. GCPR, 2017.
M. Zisler, Savarino, F., Petra, S., and Schnörr, C., Gradient Flows on a Riemannian Submanifold for Discrete Tomography, in Proc. GCPR, 2017.
R. Hühnerbein, Savarino, F., Aström, F., and Schnörr, C., Image Labeling Based on Graphical Models Using Wasserstein Messages and Geometric Assignment. 2017.
R. Hühnerbein, Savarino, F., Aström, F., and Schnörr, C., Image Labeling Based on Graphical Models Using Wasserstein Messages and Geometric Assignment. 2017.
F. Aström, Petra, S., Schmitzer, B., and Schnörr, C., Image Labeling by Assignment, J. Math. Imag. Vision, vol. 58, pp. 211–238, 2017.
F. Aström, Petra, S., Schmitzer, B., and Schnörr, C., Image Labeling by Assignment, J. Math. Imag. Vision, vol. 58, pp. 211–238, 2017.
M. Zisler, Aström, F., Petra, S., and Schnörr, C., Image Reconstruction by Multilabel Propagation, in Proc. SSVM, 2017, vol. 10302.
A. Kirillov, Levinkov, E., Andres, B., Savchynskyy, B., and Rother, C., InstanceCut: From edges to instances with MultiCut, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 7322–7331.
E. Levinkov, Uhrig, J., Tang, S., Omran, M., Insafutdinov, E., Kirillov, A., Rother, C., Brox, T., Schiele, B., and Andres, B., Joint graph decomposition & node labeling: Problem, algorithms, applications, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 1904–1912.
A. Kirillov, Schlesinger, D., Zheng, S., Savchynskyy, B., Torr, P. H. S., and Rother, C., Joint training of generic CNN-CRF models with stochastic optimization, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10112 LNCS, pp. 221–236.
A. Kirillov, Schlesinger, D., Zheng, S., Savchynskyy, B., Torr, P. H. S., and Rother, C., Joint training of generic CNN-CRF models with stochastic optimization, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10112 LNCS, pp. 221–236.
M. Storath, Weinmann, A., and Unser, M., Jump-penalized least absolute values estimation of scalar or circle-valued signals, Information and Inference, vol. 6, no. 3, pp. 225–245, 2017.PDF icon Technical Report (3.4 MB)
L. Schott, Learned Watershed Algorithm: End-to-End Learning of Seeded Segmentation, Heidelberg University, 2017.

Pages