Publications

Export 1229 results:
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is S  [Clear All Filters]
2014
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality by Pruning for MAP-inference with General Graphical Models, in IEEE Conference on Computer Vision and Pattern Recognition 2014, 2014.PDF icon Technical Report (703.34 KB)
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality by Pruning for MAP-inference with General Graphical Models, in IEEE Conference on Computer Vision and Pattern Recognition 2014, 2014.PDF icon Technical Report (703.34 KB)
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality by Pruning for MAP-inference with General Graphical Models, in IEEE Conference on Computer Vision and Pattern Recognition 2014, 2014.PDF icon Technical Report (703.34 KB)
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality by Pruning for MAP-inference with General GraphicalModels, CVPR. Proceedings. pp. 1170-1177, 2014.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality by Pruning for MAP-inference with General GraphicalModels, CVPR. Proceedings. pp. 1170-1177, 2014.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality by Pruning for MAP-inference with General GraphicalModels, CVPR. Proceedings. pp. 1170-1177, 2014.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality by Pruning for MAP-inference with General Graphical Models, in IEEE Conference on Computer Vision and Pattern Recognition 2014, 2014.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality by Pruning for MAP-inference with General Graphical Models, in IEEE Conference on Computer Vision and Pattern Recognition 2014, 2014.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality by Pruning for MAP-inference with General Graphical Models, in IEEE Conference on Computer Vision and Pattern Recognition 2014, 2014.
A. Denitiu, Petra, S., Schnörr, C., and Schnörr, C., Phase Transitions and Cosparse Tomographic Recovery of Compound Solid Bodies from Few Projections, Fundamenta Informaticae, vol. 135, p. 73--102, 2014.PDF icon Technical Report (2.24 MB)
A. Denitiu, Petra, S., Schnörr, C., and Schnörr, C., Phase Transitions and Cosparse Tomographic Recovery of Compound Solid Bodies from Few Projections, Fundamenta Informaticae, vol. 135, p. 73--102, 2014.PDF icon Technical Report (2.24 MB)
A. Denitiu, Petra, S., Schnörr, C., and Schnörr, C., Phase Transitions and Cosparse Tomographic Recovery of Compound Solid Bodies from Few Projections, Fundamenta Informaticae, vol. 135, pp. 73–102, 2014.
A. Denitiu, Petra, S., Schnörr, C., and Schnörr, C., Phase Transitions and Cosparse Tomographic Recovery of Compound Solid Bodies from Few Projections, Fundamenta Informaticae, vol. 135, pp. 73–102, 2014.
F. Rathke, Schmidt, S., and Schnörr, C., Probabilistic Intra-Retinal Layer Segmentation in 3-D OCT Images Using Global Shape Regularization, Med. Image Anal., vol. 18, pp. 781–794, 2014.
F. Rathke, Schmidt, S., and Schnörr, C., Probabilistic Intra-Retinal Layer Segmentation in 3-D OCT Images Using Global Shape Regularization, Med. Image Anal., vol. 18, pp. 781–794, 2014.
F. Rathke, Schmidt, S., and Schnörr, C., Probabilistic Intra-Retinal Layer Segmentation in 3-D OCT Images Using Global Shape Regularization, Medical Image Analysis, vol. 18, pp. 781-794, 2014.
F. Rathke, Schmidt, S., and Schnörr, C., Probabilistic Intra-Retinal Layer Segmentation in 3-D OCT Images Using Global Shape Regularization, Medical Image Analysis, vol. 18, pp. 781-794, 2014.
F. Rathke, Schmidt, S., and Schnörr, C., Probabilistic Intra-Retinal Layer Segmentation in 3-D OCT Images Using Global Shape Regularization, Medical Image Analysis, vol. 18, pp. 781-794, 2014.PDF icon Technical Report (4.07 MB)
F. Rathke, Schmidt, S., and Schnörr, C., Probabilistic Intra-Retinal Layer Segmentation in 3-D OCT Images Using Global Shape Regularization, Medical Image Analysis, vol. 18, pp. 781-794, 2014.PDF icon Technical Report (4.07 MB)
F. Lenzen, Lellmann, J., Becker, F., and Schnörr, C., Solving Quasi-Variational Inequalities for Image Restoration with Adaptive Constraint Sets, SIAM J.~Imag.~Sci., vol. 7, p. 2139--2174, 2014.PDF icon Technical Report (802.13 KB)
F. Lenzen, Lellmann, J., Becker, F., and Schnörr, C., Solving Quasi-Variational Inequalities for Image Restoration with Adaptive Constraint Sets, SIAM J. Imag. Sci., vol. 7, pp. 2139–2174, 2014.
F. Lenzen, Lellmann, J., Becker, F., and Schnörr, C., Solving QVIs for Image Restoration with Adaptive Constraint Sets, SIAM Journal on Imaging Sciences (SIIMS), in press, 2014.
B. Krolla, Diebold, M., Goldlücke, B., and Stricker, D., Spherical Light Fields, in Proceedings of the British Machine Vision Conference, 2014.
L. Fiaschi, Diego, F., Grosser, K. - H., Schiegg, M., Köthe, U., Zlatic, M., and Hamprecht, F. A., Tracking indistinguishable translucent objects over time using weakly supervised structured learning, in CVPR. Proceedings, 2014, pp. 2736 - 2743.PDF icon Technical Report (1.47 MB)
S. Lenor, Martini, J., Jähne, B., Stopper, U., Weber, S., and Ohr, F., Tracking-based visibility estimation, in Pattern Recognition, 36th German Conference, GCPR 2014, Münster, Germany, September 2-5, 2014, 2014, vol. 8753, p. 365--376.
2013
M. Sindeev, Konushin, A., and Rother, C., Alpha-flow for video matting, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2013, vol. 7726 LNCS, pp. 438–452.
R. Mikut, Dickmeis, T., Driever, W., Geurts, P., Hamprecht, F. A., Kausler, B. X., Ledesma-Carbayo, M., Marée, R., Mikula, K., Pantazis, P., Ronneberger, O., Santos, A., and Stotzka, R., Automated Processing of Zebrafish Imaging Data: A Survey, Zebrafish, vol. 10 (3), 2013.PDF icon Technical Report (1.73 MB)
R. Mikut, Dickmeis, T., Driever, W., Geurts, P., Hamprecht, F. A., Kausler, B. X., Ledesma-Carbayo, M., Marée, R., Mikula, K., Pantazis, P., Ronneberger, O., Santos, A., and Stotzka, R., Automated Processing of Zebrafish Imaging Data: A Survey, Zebrafish, vol. 10 (3), 2013.PDF icon Technical Report (1.73 MB)
S. Petra, Schnörr, C., Becker, F., and Lenzen, F., B-SMART: Bregman-Based First-Order Algorithms for Non-Negative Compressed Sensing Problems, in Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision (SSVM) 2013, 2013, vol. 7893, pp. 110-124.PDF icon Technical Report (1.15 MB)
S. Petra, Schnörr, C., Becker, F., and Lenzen, F., B-SMART: Bregman-Based First-Order Algorithms for Non-Negative Compressed Sensing Problems, in Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision SSVM, 2013, pp. 110-124.
S. Mersmann, Seitel, A., Erz, M., Jähne, B., Nickel, F., Mieth, M., Mehrabi, A., and Maier-Hein, L., Calibration of time-of-flight cameras for accurate intraoperative surface reconstruction, Med. Phys., vol. 40, p. 082701, 2013.
F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C., A class of quasi-variational inequalities for adaptive image denoising and decomposition, Computational Optimization and Applications, vol. 54, pp. 371-398, 2013.PDF icon Technical Report (748.66 KB)
F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C., A Class of Quasi-Variational Inequalities for Adaptive Image Denoising and Decomposition, Computational Optimization and Applications (COAP), vol. 54 (2), pp. 371-398, 2013.
D. Breitenreicher, Lellmann, J., and Schnörr, C., COAL: a generic modelling and prototyping framework for convex optimization problems of variational image analysis, Optimization Methods and Software, vol. 28, pp. 1081-1094, 2013.PDF icon Technical Report (1.69 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Lellmann, J., Komodakis, N., and Rother, C., A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problem, in CVPR, 2013.PDF icon Technical Report (1.35 MB)

Pages