Publications

Export 29 results:
Author Title Type [ Year(Desc)]
Filters: Author is Christoph Schnörr and First Letter Of Title is C  [Clear All Filters]
2002
A. Bruhn, Weickert, J., and Schnörr, C., Combining the Advantages of Local and Global Optic Flow Methods, in Pattern Recognition, Proc. 24th DAGM Symposium, Zürich, Switzerland, 2002, vol. 2449, pp. 454–462.
2013
F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C., A Class of Quasi-Variational Inequalities for Adaptive Image Denoising and Decomposition, Computational Optimization and Applications (COAP), vol. 54 (2), pp. 371-398, 2013.
F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C., A class of quasi-variational inequalities for adaptive image denoising and decomposition, Computational Optimization and Applications, vol. 54, pp. 371-398, 2013.PDF icon Technical Report (748.66 KB)
D. Breitenreicher, Lellmann, J., and Schnörr, C., COAL: a generic modelling and prototyping framework for convex optimization problems of variational image analysis, Optimization Methods and Software, vol. 28, pp. 1081-1094, 2013.PDF icon Technical Report (1.69 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Sungwoong, K., Kausler, B. X., Lellmann, J., Komodakis, N., and Rother, C., A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems, in CVPR 2013. Proceedings, 2013.PDF icon Technical Report (1.35 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Lellmann, J., Komodakis, N., and Rother, C., A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problem, in CVPR, 2013.PDF icon Technical Report (1.35 MB)
B. Schmitzer and Schnörr, C., Contour Manifolds and Optimal Transport. 2013.
P. Swoboda and Schnörr, C., Convex Variational Image Restoration with Histogram Priors, SIAM J.~Imag.~Sci., vol. 6, pp. 1719-1735, 2013.PDF icon Technical Report (553.54 KB)
S. Petra, Schnörr, C., and Schröder, A., Critical Parameter Values and Reconstruction Propertiesof Discrete Tomography: Application to Experimental FluidDynamics, Fundamenta Informaticae, vol. 125, p. 285--312, 2013.PDF icon Technical Report (1.42 MB)
2015
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, Int.~J.~Comp.~Vision, 2015.PDF icon Technical Report (5.12 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, pp. 1-30, 2015.PDF icon Technical Report (1.5 MB)
F. Rathke and Schnörr, C., A Computational Approach to Log-Concave Density Estimation, An. St. Univ. Ovidius Constanta, vol. 23, pp. 151-166, 2015.PDF icon Technical Report (1.07 MB)
F. Rathke and Schnörr, C., A Computational Approach to Log-Concave Density Estimation, An. St. Univ. Ovidius Constanta, vol. 23, pp. 151-166, 2015.
F. Silvestri, Reinelt, G., and Schnörr, C., A Convex Relaxation Approach to the Affine Subspace Clustering Problem, in Proc.~GCPR, 2015.PDF icon Technical Report (878.63 KB)