Publications

Export 223 results:
Author Title Type [ Year(Asc)]
Filters: Author is Christoph Schnörr  [Clear All Filters]
2011
F. Rathke, Schmidt, S., and Schnörr, C., Order Preserving and Shape Prior Constrained Intra-Retinal Layer Segmentation in Optical Coherence Tomography, in MICCAI, 2011, vol. 6893, p. 370--377.PDF icon Technical Report (1.12 MB)
F. Rathke, Schmidt, S., and Schnörr, C., Order preserving and shape prior constrained intra-retinal layer segmentation in optical coherence tomography, Medical Image Computing and Computer-Assisted Intervention (MICCAI 2011), vol. 6893. Springer, pp. 370–377, 2011.
F. Rathke, Schmidt, S., and Schnörr, C., Order Preserving and Shape Prior Constrained Intra-Retinal Layer Segmentation in Optical Coherence Tomography, in MICCAI, 2011, vol. 6893, pp. 370–377.
D. Breitenreicher, Lellmann, J., and Schnörr, C., Sparse Template-Based Variational Image Segmentation, Advances in Adaptive Data Analysis, vol. 3, pp. 149-166, 2011.PDF icon Technical Report (866.28 KB)
D. Breitenreicher, Lellmann, J., and Schnörr, C., Sparse Template-Based Variational Image Segmentation, Advances in Adaptive Data Analysis, vol. 3, pp. 149-166, 2011.
B. Savchynskyy, Kappes, J. H., Schmidt, S., and Schnörr, C., A Study of Nesterov's Scheme for Lagrangian Decomposition and MAP Labeling, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), accepted as oral presentation, pp. 1817 - 1823, 2011.
B. Savchynskyy, Kappes, J. H., Schmidt, S., and Schnörr, C., A Study of Nesterov's Scheme for Lagrangian Decomposition and MAP Labeling, in IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2011.PDF icon Technical Report (408.99 KB)
F. Becker, Wieneke, B., Petra, S., Schröder, A., and Schnörr, C., Variational Adaptive Correlation Method for Flow Estimation, IEEE Transactions on Image Processing, vol. 21, 6, pp. 3053 - 3065, 2011.
F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C., Variational Image Denoising with Adaptive Constraint Sets, in Proceedings of the 3nd International Conference on Scale Space and Variational Methods in Computer Vision 2011, in press, 2011, vol. 6667, pp. 206-217.
F. Becker, Lenzen, F., Kappes, J. H., and Schnörr, C., Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences, in 2011 IEEE International Conference on Computer Vision ICCV, 2011, pp. 1692-1699.
F. Becker, Lenzen, F., Kappes, J. H., and Schnörr, C., Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences, in 2011 IEEE International Conference on Computer Vision (ICCV), 2011, p. 1692 -- 1699.PDF icon Technical Report (4.9 MB)
F. Becker, Lenzen, F., Kappes, J. H., and Schnörr, C., Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences, in 2011 IEEE International Conference on Computer Vision (ICCV), 2011, pp. 1692 – 1699.
2010
B. Andres, Kappes, J. H., Köthe, U., Schnörr, C., and Hamprecht, F. A., An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM, in Pattern Recognition, Proc.~32th DAGM Symposium, 2010, pp. 353-362.
B. Andres, Kappes, J. H., Köthe, U., Schnörr, C., and Hamprecht, F. A., An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM, in Pattern Recognition, Proc.~32th DAGM Symposium, 2010.PDF icon Technical Report (218.43 KB)
J. Lellmann, Breitenreicher, D., and Schnörr, C., Fast and Exact Primal-Dual Iterations for Variational Problems in Computer Vision, in European Conference on Computer Vision (ECCV), 2010, vol. 6312, p. 494--505.PDF icon Technical Report (1.94 MB)
J. H. Kappes, Schmidt, S., and Schnörr, C., MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation, in European Conference on Computer Vision (ECCV), 2010, vol. 6313, p. 735--747.
J. H. Kappes, Schmidt, S., and Schnörr, C., MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation, in European Conference on Computer Vision (ECCV), 2010, vol. 6313, p. 735--747.PDF icon Technical Report (1.49 MB)
J. Lellmann, Lenzen, F., and Schnörr, C., Optimality Bounds for Variational Relaxations of Optimal Partition Problems, 2010.
A. Vlasenko and Schnörr, C., Physically Consistent and Efficient Variational Denoising of Image Fluid Flow Estimates, IEEE Trans.~Image Proc., vol. 19, pp. 586-595, 2010.PDF icon Technical Report (2.65 MB)
D. Breitenreicher and Schnörr, C., Robust 3D object registration without explicit correspondence using geometric integration, Machine Vision and Applications, vol. 21, pp. 601-611, 2010.PDF icon Technical Report (1.65 MB)
D. Breitenreicher and Schnörr, C., Robust 3D object registration without explicit correspondence using geometric integration, Machine Vision and Applications, vol. 21, pp. 601-611, 2010.
M. Bergtholdt, Kappes, J. H., Schmidt, S., and Schnörr, C., A Study of Parts-Based Object Class Detection Using Complete Graphs, Int.~J.~Comp.~Vision, vol. 87, pp. 93-117, 2010.PDF icon Technical Report (2.18 MB)
M. Bergtholdt, Kappes, J. H., Schmidt, S., and Schnörr, C., A Study of Parts-Based Object Class Detection Using Complete Graphs, Int. J. Comp. Vision, vol. 87, pp. 93-117, 2010.
D. Heitz, Mémin, E., and Schnörr, C., Variational fluid flow measurements from image sequences: synopsis and perspectives, Exp.~Fluids, vol. 48, pp. 369-393, 2010.PDF icon Technical Report (1.91 MB)
2009
S. Petra, Schröder, A., and Schnörr, C., 3D Tomography from Few Projections in Experimental Fluid Mechanics, Imaging Measurement Methods for Flow Analysis, vol. 106. Springer, pp. 63-72, 2009.PDF icon Technical Report (411.51 KB)
S. Petra, Popa, C., and Schnörr, C., Accelerating Constrained SIRT with Applications in Tomographic Particle Image Reconstruction, IWR, University of Heidelberg, 2009.PDF icon Technical Report (3.33 MB)
J. Yuan, Schnörr, C., and Steidl, G., Convex Hodge Decomposition and Regularization of Image Flows, J.~Math.~Imag.~Vision, vol. 33, pp. 169-177, 2009.PDF icon Technical Report (1003.75 KB)
J. Lellmann, Kappes, J. H., Yuan, J., Becker, F., Schnörr, C., Mórken, K., and Lysaker, M., Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation, in Scale Space and Variational Methods in Computer Vision (SSVM 2009), 2009, vol. 5567, pp. 150-162.
J. Lellmann, Kappes, J. H., Yuan, J., Becker, F., and Schnörr, C., Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation, in Scale Space and Variational Methods in Computer Vision (SSVM 2009), 2009, vol. 5567, pp. 150-162.PDF icon Technical Report (1.75 MB)
J. Lellmann, Becker, F., and Schnörr, C., Convex Optimization for Multi-Class Image Labeling with a Novel Family of Total Variation Based Regularizers, in Proceedings of the IEEE Conference on Computer Vision (ICCV 09) Kyoto, Japan, 2009, pp. 646-653.
J. Lellmann, Becker, F., and Schnörr, C., Convex Optimization for Multi-Class Image Labeling with a Novel Family of Total Variation Based Regularizers, in IEEE International Conference on Computer Vision (ICCV), 2009, p. 646 -- 653.PDF icon Technical Report (930.18 KB)
A. Nicola, Petra, S., Popa, C., and Schnörr, C., On a general extending and constraining procedure for linear iterative methods, IWR, University of Heidelberg, 2009.PDF icon Technical Report (799.47 KB)
D. Breitenreicher and Schnörr, C., Intrinsic Second-Order Geometric Optimization for Robust Point Set Registration Without Correspondence, in Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2009), 2009, vol. 5681, pp. 274-287.PDF icon Technical Report (752.29 KB)
D. Breitenreicher and Schnörr, C., Intrinsic Second-Order Geometric Optimization for Robust Point Set Registration Without Correspondence, in Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2009), 2009, vol. 5681, pp. 274-287.
F. Lauer and Schnörr, C., Spectral Clustering of Linear Subspaces for Motion Segmentation, in Proceedings of the IEEE Conference on Computer Vision (ICCV 09) Kyoto, Japan, in press, 2009, pp. 678-685.

Pages