Publications

Export 224 results:
Author Title Type [ Year(Asc)]
Filters: Author is Fred A. Hamprecht  [Clear All Filters]
2015
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, Int.~J.~Comp.~Vision, 2015.PDF icon Technical Report (5.12 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, International Journal of Computer Vision, pp. 1-30, 2015.PDF icon Technical Report (1.5 MB)
M. Kandemir and Hamprecht, F. A., The Deep Feed-Forward Gaussian Process: An Effective Generalization to Covariance Priors, NIPS. Proceedings, vol. 44. pp. 145-159, 2015.PDF icon Supplementary Material (223.39 KB)PDF icon Technical Report (2.58 MB)
T. Beier, Hamprecht, F. A., and Kappes, J. H., Fusion Moves for Correlation Clustering, in CVPR. Proceedings, 2015, pp. 3507-3516.PDF icon Technical Report (1.19 MB)
M. Schiegg, Hanslovsky, P., Haubold, C., Köthe, U., Hufnagel, L., and Hamprecht, F. A., Graphical Model for Joint Segmentation and Tracking of Multiple Dividing Cell, Bioinformatics, vol. 31, no. 6, pp. 948-956, 2015.PDF icon Technical Report (534.29 KB)
N. Krasowski, Beier, T., Knott, G. W., Köthe, U., Hamprecht, F. A., and Kreshuk, A., Improving 3D EM Data Segmentation by Joint Optimization over Boundary Evidence and Biological Priors, in 12th {IEEE} International Symposium on Biomedical Imaging, {ISBI} 2015, Brooklyn, NY, USA, April 16-19, 2015, 2015, pp. 536-539.PDF icon Technical Report (2.25 MB)
J. Funke, Hamprecht, F. A., and Zhang, C., Learning to Segment: Training Hierarchical Segmentation under a Topological Loss, in MICCAI. Proceedings, Part III, 2015, vol. 9351, pp. 268-275.PDF icon Technical Report (2.92 MB)
M. Schiegg, Heuer, B., Haubold, C., Wolf, S., Köthe, U., and Hamprecht, F. A., Proof-reading Guidance in Cell Tracking by Sampling from Tracking-by-assignment Models, in ISBI. Proceedings, 2015, pp. 394-398.PDF icon Technical Report (648.55 KB)
C. Cali, Baghabra, J., Boges, D. J., Holst, G. R., Kreshuk, A., Hamprecht, F. A., Srinivasan, M., Lehväslaiho, H., and Magistretti, P. J., Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues, Journal of Comparative Neurology, vol. 524, pp. 23-38, 2015.
A. Kreshuk, Funke, J., Cardona, A., and Hamprecht, F. A., Who is talking to whom: synaptic partner detection in anisotropic volumes of insect brain, MICCAI. Proceedings, vol. LNCS 9349. Springer, pp. 661-668, 2015.PDF icon Technical Report (2.14 MB)
2014
X. Lou, Schiegg, M., and Hamprecht, F. A., Active Structured Learning for Cell Tracking: Algorithm, Framework and Usability, IEEE Transactions on Medical Imaging, vol. 33 (4), pp. 849-860, 2014.PDF icon Technical Report (6.84 MB)
T. Kröger, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Asymmetric Cuts: Joint Image Labeling and Partitioning, in Pattern Recognition - 36th German Conference, {GCPR} 2014, Münster, Germany, September 2-5, 2014, Proceedings, 2014.PDF icon Technical Report (3.46 MB)
T. Kröger, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Asymmetric Cuts: Joint Image Labeling and Partitioning, in 36th German Conference on Pattern Recognition, 2014.
B. F. Tek, Kröger, T., Mikula, S., and Hamprecht, F. A., Automated Cell Nucleus Detection for Large-Volume Electron Microscopy of Neural Tissue, in ISBI. Proceedings, 2014, pp. 69-72.PDF icon Technical Report (533.92 KB)
A. Kreshuk, Köthe, U., Pax, E., Bock, D. D., and Hamprecht, F. A., Automated Detection of Synapses in Serial Section Transmission Electron Microscopy Image Stacks, PLoS ONE, vol. 9, p. 2, 2014.PDF icon Technical Report (16.66 MB)
C. Zhang, Yarkony, J., and Hamprecht, F. A., Cell detection and segmentation using correlation clustering, in MICCAI. Proceedings, 2014, pp. 9-16.PDF icon Technical Report (8.06 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, CoRR, vol. abs/1404.0533, 2014.PDF icon Technical Report (3.32 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, CoRR, 2014.
M. Kandemir and Hamprecht, F. A., Computer-aided diagnosis from weak supervision: A benchmarking study, Computerized Medical Imaging and Graphics, vol. 42, pp. 44-50, 2014.PDF icon Technical Report (4.28 MB)
T. Beier, Kröger, T., Kappes, J. H., Köthe, U., and Hamprecht, F. A., Cut, Glue and Cut: A Fast, Approximate Solver for Multicut Partitioning, in 2014 {IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2014, Columbus, OH, USA, June 23-28, 2014, 2014.PDF icon Technical Report (10.06 MB)
C. Decker and Hamprecht, F. A., Detecting individual body parts improves mouse behavior classification, in Workshop on visual observation and analysis of Vertebrate And Insect Behavior (VAIB), 22nd International Conference on Pattern Recognition (ICPR). Proceedings, 2014.PDF icon Technical Report (1.48 MB)
M. Kandemir, Feuchtinger, A., Walch, A., and Hamprecht, F. A., Digital Pathology: Multiple instance learning can detect Barrett'scancer, ISBI. Proceedings. pp. 1348-1351, 2014.PDF icon Technical Report (2.86 MB)
M. Kandemir, Zhang, C., and Hamprecht, F. A., Empowering multiple instance histopathology cancer diagnosis by cell graphs, in MICCAI. Proceedings, 2014, vol. 8674, pp. 228-235.PDF icon Technical Report (1.76 MB)
M. Kandemir, Rubio, J. C., Schmidt, U., Wojek, C., Welbl, J., Ommer, B., and Hamprecht, F. A., Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures, in Medical Image Computing and Computer-Assisted Intervention, 2014, p. 154--161.PDF icon Technical Report (2 MB)
M. Kandemir, Rubio, J. C., Schmidt, U., Welbl, J., Ommer, B., and Hamprecht, F. A., Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures, in MICCAI. Proceedings, 2014, pp. 154-161.PDF icon Paper (2 MB)
R. Lindner, Lou, X., Reinstein, J., Shoeman, R. L., Hamprecht, F. A., and Winkler, A., Hexicon 2: Automated Processing of Hydrogen-Deuterium Exchange Mass Spectrometry Data with Improved Deuteration Distribution Estimation, Journal of The American Society for Mass Spectrometry, vol. 25, pp. 1018-1028, 2014.PDF icon Technical Report (2.1 MB)
J. Kleesiek, Biller, A., Urban, G., Köthe, U., Bendszus, M., and Hamprecht, F. A., ilastik for Multi-modal Brain Tumor Segmentation, in MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, 3rdplace, 2014, pp. 12-17.PDF icon Technical Report (405.91 KB)
M. Kandemir and Hamprecht, F. A., Instance Label Prediction by Dirichlet Process Multiple Instance Learning, in UAI. Proceedings, 2014.PDF icon Technical Report (4.26 MB)
G. Urban, Bendszus, M., Hamprecht, F. A., and Kleesiek, J., Multi-modal Brain Tumor Segmentation using Deep Convolutional NeuralNetworks, in MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winningcontribution, 2014, pp. 31-35.
C. N. Straehle, Kandemir, M., Köthe, U., and Hamprecht, F. A., Multiple instance learning with response-optimized random forests, in ICPR. Proceedings, 2014, pp. 3768 - 3773.PDF icon Technical Report (296.66 KB)
J. Yarkony, Beier, T., Baldi, P., and Hamprecht, F. A., Parallel Multicut Segmentation via Dual Decomposition, in New Frontiers in Mining Complex Patterns - Third International Workshop, {NFMCP} 2014, Held in Conjunction with {ECML-PKDD} 2014, Nancy, France, September 19, 2014, Revised Selected Papers, 2014.
B. Maco, Cantoni, M., Holtmaat, A., Kreshuk, A., Hamprecht, F. A., and Knott, G. W., Semiautomated Correlative 3D Electron Microscopy of In Vivo Imaged Axons and Dendrites, Nature Protocols, vol. 9, pp. 1354-1366, 2014.PDF icon Technical Report (2.01 MB)

Pages