J. Yuan, Ruhnau, P., Mémin, E., and Schnörr, C.,
“Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation”, in
Scale-Space 2005, 2005, vol. 3459, pp. 267–278.
T. Schüle, Schnörr, C., Weber, S., and Hornegger, J.,
“Discrete Tomography By Convex-Concave Regularization and D.C. Programming”,
Discr. Appl. Math., vol. 151, pp. 229-243, 2005.
T. Kohlberger, Schnörr, C., Bruhn, A., and Weickert, J.,
“Domain decomposition for variational optical flow computation”,
IEEE Trans. Image Proc., vol. 14, pp. 1125-1137, 2005.
M. Heiler and Schnörr, C.,
“Learning Sparse Image Codes by Convex Programming”, in
Proc. Tenth IEEE Int. Conf. Computer Vision (ICCV'05), Beijing, China, 2005, pp. 1667-1674.
C. Schellewald and Schnörr, C.,
“Probabilistic Subgraph Matching Based on Convex Relaxation”, in
Proc. Int. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR'05), 2005, vol. 3757, pp. 171-186.
M. Heiler and Schnörr, C.,
“Reverse-Convex Programming for Sparse Image Codes”, in
Proc. Int. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR'05), 2005, vol. 3757, pp. 600-616.
M. Heiler, Keuchel, J., and Schnörr, C.,
“Semidefinite Clustering for Image Segmentation with A-priori Knowledge”,
Pattern Recognition, Proc. 27th DAGM Symposium, vol. 3663. Springer, pp. 309–317, 2005.
P. Ruhnau, Gütter, C., Putze, T., and Schnörr, C.,
“A variational approach for particle tracking velocimetry”,
Meas. Science and Techn., vol. 16, pp. 1449-1458, 2005.
N. Paragios, Faugeras, O., Chan, T., and Schnörr, C., Eds.,
“Variational, Geometric and Level Sets in Computer Vision (VLSM'05)”,
lncs, vol. 3752. Springer, Beijing, China, 2005.
P. Ruhnau, Kohlberger, T., Nobach, H., and Schnörr, C.,
“Variational Optical Flow Estimation for Particle Image Velocimetry”,
Experiments in Fluids, vol. 38, pp. 21–32, 2005.