Publications

Export 94 results:
Author Title Type [ Year(Asc)]
Filters: First Letter Of Title is L  [Clear All Filters]
2021
M. Afifi, Derpanis, K. G., Ommer, B., and Brown, M. S., Learning Multi-Scale Photo Exposure Correction, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
M. Haußmann, Gerwinn, S., Look, A., Rakitsch, B., and Kandemir, M., Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes, International Conference on Artificial Intelligence and Statistics , vol. PMLR 130. pp. 478-486, 2021.
2020
S. Friman, Laboratory investigations of concentration and wind profiles close to the wind-driven wavy water surface, vol. Dissertation. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg, Heidelberg, 2020.
2017
L. Schott, Learned Watershed Algorithm: End-to-End Learning of Seeded Segmentation, Heidelberg University, 2017.
S. Wolf, Schott, L., Köthe, U., and Hamprecht, F. A., Learned Watershed: End-to-End Learning of Seeded Segmentation, ICCV. pp. 2030-2038, 2017.PDF icon Technical Report (3.76 MB)
M. Weiler, Learning Steerable Filters for Rotation Equivariant Convolutional Neural Networks, Heidelberg University, 2017.
J. Kruse, Rother, C., and Schmidt, U., Learning to Push the Limits of Efficient FFT-Based Image Deconvolution, in Proceedings of the IEEE International Conference on Computer Vision, 2017, vol. 2017-Octob, pp. 4596–4604.
J. Kruse, Rother, C., Schmidt, U., and Dresden, T. U., Learning to Push the Limits of Efficient FFT-based Image Deconvolution - Supplemental Material, 2017.
M. Bautista, Fuchs, P., and Ommer, B., Learning Where to Drive by Watching Others, Proceedings of the German Conference Pattern Recognition, vol. 1. Springer-Verlag, Basel, 2017.
E. Bodnariuc, Petra, S., Schnörr, C., and Voorneveld, J., A Local Spatio-Temporal Approach to Plane Wave Ultrasound Particle Image Velocimetry, in Proc. GCPR, 2017.
F. Rathke, Desana, M., and Schnörr, C., Locally Adaptive Probabilistic Models for Global Segmentation of Pathological OCT Scans, in Proc. MICCAI, 2017.
F. Rathke, Desana, M., and Schnörr, C., Locally Adaptive Probabilistic Models for Global Segmentation of Pathological OCT Scans, MICCAI. Proceedings. pp. 177-184, 2017.PDF icon Technical Report (4.79 MB)
B. Brattoli, Büchler, U., Wahl, A. - S., Schwab, M. E., and Ommer, B., LSTM Self-Supervision for Detailed Behavior Analysis, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.PDF icon Article (8.75 MB)
2015
A. Krull, Brachmann, E., Michel, F., Yang, M. Ying, Gumhold, S., and Rother, C., Learning analysis-by-synthesis for 6d pose estimation in RGB-D images, in Proceedings of the IEEE International Conference on Computer Vision, 2015, vol. 2015 Inter, pp. 954–962.
J. Funke, Hamprecht, F. A., and Zhang, C., Learning to Segment: Training Hierarchical Segmentation under a Topological Loss, in MICCAI. Proceedings, Part III, 2015, vol. 9351, pp. 268-275.PDF icon Technical Report (2.92 MB)
B. Krolla, Diebold, M., and Stricker, D., Light Field from Smartphone-Based Dual Video, in Computer Vision - ECCV 2014 Workshops: Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part II, Cham: Springer International Publishing, 2015, pp. 600–610.
M. Diebold, Blum, O., Gutsche, M., Wanner, S., Garbe, C., Baker, H., and Jähne, B., Light-field camera design for high-accuracy depth estimation, in Videometrics, Range Imaging, and Applications XIII, 2015.
M. Diebold, Blum, O., Gutsche, M., Wanner, S., Garbe, C. S., Baker, H., and Jähne, B., Light-field camera design for high-accuracy depth estimation, Videometrics, Range Imaging, and Applications XIII. 2015.

Pages