Publications

Export 1963 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
K
Kainmueller, D, Jug, F, Rother, C and Myers, G (2014). Active graph matching for automatic joint segmentation and annotation of C. elegans. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8673 LNCS 81–88
Kamann, C and Rother, C (2020). Benchmarking the Robustness of Semantic Segmentation Models. CVPR 2020. http://arxiv.org/abs/1908.05005PDF icon PDF (3.61 MB)
Kamann, C and Rother, C (2019). Benchmarking the Robustness of Semantic Segmentation Models. http://arxiv.org/abs/1908.05005
Kandemir, M and Hamprecht, F A (2015). The Deep Feed-Forward Gaussian Process: An Effective Generalization to Covariance Priors. NIPS. Proceedings. 44 145-159PDF icon Supplementary Material (223.39 KB)PDF icon Technical Report (2.58 MB)
Kandemir, M, Haußmann, M, Diego, F, Rajamani, K, van der Laak, J and Hamprecht, F A (2016). Variational weakly-supervised Gaussian processes. BMVC. ProceedingsPDF icon Technical Report (3.28 MB)
Kandemir, M, Hamprecht, F A, Wojek, C and Schmidt, U (2017). Active machine learning for training an event classification. Patent, Patent Number WO2017032775 A1
Kandemir, M, Hamprecht, F A, Wojek, C and Schmidt, U (2017). Maschinelles Lernen. Patent, Patent Number WO2017032775A1PDF icon Technical Report (317.04 KB)
Kandemir, M, Rubio, J C, Schmidt, U, Wojek, C, Welbl, J, Ommer, B and Hamprecht, F A (2014). Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures. Medical Image Computing and Computer-Assisted Intervention. Springer. 154--161PDF icon Technical Report (2 MB)
Kandemir, M (2015). Asymmetric transfer learning with deep Gaussian processes. ICML. Proceedings. 730-738PDF icon Technical Report (570.95 KB)
Kandemir, M, Feuchtinger, A, Walch, A and Hamprecht, F A (2014). Digital Pathology: Multiple instance learning can detect Barrett'scancer. ISBI. Proceedings. 1348-1351PDF icon Technical Report (2.86 MB)
Kandemir, M and Hamprecht, F A (2015). Cell event detection in phase-contrast microscopy sequences from few annotations. MICCAI. Proceedings. Springer. LNCS 9351 316-323PDF icon Technical Report (564.69 KB)
Kandemir, M and Hamprecht, F A (2014). Computer-aided diagnosis from weak supervision: A benchmarking study. Computerized Medical Imaging and Graphics. 42 44-50PDF icon Technical Report (4.28 MB)
Kandemir, M and Hamprecht, F A (2014). Instance Label Prediction by Dirichlet Process Multiple Instance Learning. UAI. ProceedingsPDF icon Technical Report (4.26 MB)
Kandemir, M, Klami, A, Gonen, M, Vetek, A and Kaski, S (2014). Multi-task and multi-view learning of user state. Neurocomputing. 139 97-106
Kandemir, M, Rubio, J C, Schmidt, U, Welbl, J, Ommer, B and Hamprecht, F A (2014). Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures. MICCAI. Proceedings. Springer. 154-161PDF icon Paper (2 MB)
Kandemir, M, Zhang, C and Hamprecht, F A (2014). Empowering multiple instance histopathology cancer diagnosis by cell graphs. MICCAI. Proceedings. Springer. 8674 228-235PDF icon Technical Report (1.76 MB)
Kandemir, M, Agkül, A, Haußmann, M and Ünal, G (2021). Evidential Turing Processes. arXiv preprint. https://arxiv.org/abs/2106.01216
Kandlbinder, T (1994). Gasaustauschmessungen Mit Sauerstoff. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ.\ Heidelberg
Kannan, A, Winn, J and Rother, C (2007). Clustering appearance and shape by learning jigsaws. Advances in Neural Information Processing Systems. 657–664
Kannan, A, Winn, J and Rother, C (2007). Clustering appearance and shape by learning jigsaws. Advances in Neural Information Processing Systems. 657–664
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184. http://hci.iwr.uni-heidelberg.de/opengm2/
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184
Kappes, J Hendrik, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2016). Multicuts and Perturb & MAP for Probabilistic Graph Clustering. Journal of Mathematical Imaging and Vision. 56 221–237. http://arxiv.org/abs/1601.02088
Kappes, J Hendrik, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2015). Probabilistic correlation clustering and image partitioning using perturbed Multicuts. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 9087 231–242
Kappes, J H, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2016). Multicuts and Perturb & MAP for Probabilistic Graph Clustering. J. Math. Imag. Vision. 56 221–237
Kappes, J, Speth, M, Reinelt, G and Schnörr, C (2016). Higher-order Segmentation via Multicuts. Comp. Vision Image Understanding. 143 104–119
Kappes, J H, Petra, S, Schnörr, C and Zisler, M (2015). TomoGC: Binary Tomography by Constrained Graph Cuts. Proc. GCPR
Kappes, J, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2015). Probabilistic Correlation Clustering and Image Partitioning Using Perturbed Multicuts. Proc. SSVM. Springer
Kappes, J Hendrik, Beier, T and Schnörr, C (2014). MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves. International Workshop on Graphical Models in Computer Vision
Kappes, J H, Schmidt, S and Schnörr, C (2010). MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation. European Conference on Computer Vision (ECCV). Springer Berlin / Heidelberg. 6313 735–747
Kappes, J H and Schnörr, C (2008). MAP-Inference for Highly-Connected Graphs with DC-Programming. Pattern Recognition – 30th DAGM Symposium. Springer Verlag. 5096 1–10
Kappes, J Hendrik, Speth, M, Andres, B, Reinelt, G and Schnörr, C (2011). Globally Optimal Image Partitioning by Multicuts. EMMCVPR. Springer
Kappes, J Hendrik (2011). Inference on Highly-Connected Discrete Graphical Models with Applications to Visual Object Recognition. Ruprecht-Karls-Universität Heidelberg, Faculty of Mathematics and Computer Sciences, Heidelberg, Germany. http://www.ub.uni-heidelberg.de/archiv/11872/
Kappes, J H, Speth, M, Reinelt, G and Schnörr, C (2013). Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization. CVPR

Pages