Publications

Export 1963 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
K
Kappes, J Hendrik, Speth, M, Reinelt, G and Schnörr, C (2013). Higher-order Segmentation via Multicuts. ArXiv e-prints
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. Int.~J.~Comp.~VisionPDF icon Technical Report (5.12 MB)
Kappes, J H, Petra, S, Schnörr, C and Zisler, M (2015). TomoGC: Binary Tomography by Constrained Graph Cuts. Proc.~GCPRPDF icon Technical Report (2.46 MB)
Kappes, J H, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2015). Probabilistic Correlation Clustering and Image Partitioning Using Perturbed Multicuts. Proc.~SSVM. SpringerPDF icon Technical Report (1.1 MB)
Kappes, J H, Schmidt, S and Schnörr, C (2010). MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation. European Conference on Computer Vision (ECCV). Springer Berlin / Heidelberg. 6313 735--747PDF icon Technical Report (1.49 MB)
Kappes, J H and Schnörr, C (2008). MAP-Inference for Highly-Connected Graphs with DC-Programming. Pattern Recognition -- 30th DAGM Symposium. Springer Verlag. 5096 1--10PDF icon Technical Report (1.91 MB)
Kappes, J H, Speth, M, Andres, B, Reinelt, G and Schnörr, C (2011). Globally Optimal Image Partitioning by Multicuts. EMMCVPR. SpringerPDF icon Technical Report (7.47 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. CoRR. abs/1404.0533. http://hci.iwr.uni-heidelberg.de/opengm2/PDF icon Technical Report (3.32 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Lellmann, J, Komodakis, N and Rother, C (2013). A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problem. CVPRPDF icon Technical Report (1.35 MB)
Kappes, J H, Savchynskyy, B and Schnörr, C (2012). A Bundle Approach To Efficient MAP-Inference by Lagrangian Relaxation. CVPRPDF icon Technical Report (430.63 KB)
Kappes, J H, Speth, M, Reinelt, G and Schnörr, C (2013). Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization. CVPRPDF icon Technical Report (623.84 KB)
Kappes, J H, Speth, M, Reinelt, G and Schnörr, C (2013). Higher-order Segmentation via Multicuts. ArXiv e-printsPDF icon Technical Report (1.07 MB)
Kappes, J H, Beier, T and Schnörr, C (2014). MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves. Computer Vision - {ECCV} 2014 Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part {II}. http://dx.doi.org/10.1007/978-3-319-16181-5_37PDF icon Technical Report (557.49 KB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 1-30PDF icon Technical Report (1.5 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Sungwoong, K, Kausler, B X, Lellmann, J, Komodakis, N and Rother, C (2013). A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems. CVPR 2013. ProceedingsPDF icon Technical Report (1.35 MB)
Kappes, J H, Speth, M, Andres, B, Reinelt, G and Schnörr, C (2011). Globally Optimal Image Partitioning by Multicuts. EMMCVPR. Springer. 31-44PDF icon Technical Report (7.3 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. CoRR. http://arxiv.org/abs/1404.0533
Kappes, J H, Savchynskyy, B and Schnörr, C (2012). A Bundle Approach To Efficient MAP-Inference by Lagrangian Relaxation. CVPR. Proceedings. 1688-1695
Kappes, J H, Schmidt, S and Schnörr, C (2010). MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation. European Conference on Computer Vision (ECCV). Springer. 6313 735--747
Karim, R, Bergtholdt, M, Kappes, J H and Schnörr, C (2007). Greedy-Based Design of Sparse Two-Stage SVMs for Fast Classification. Pattern Recognition – 29th DAGM Symposium. Springer. 4713 395-404
Karim, R, Bergtholdt, M, Kappes, J H and Schnörr, C (2007). Greedy-Based Design of Sparse Two-Stage SVMs for Fast Classification. Pattern Recognition -- 29th DAGM Symposium. Springer. 4713 395-404PDF icon Technical Report (491.56 KB)
Kassemeyer, S (2009). Quantification Of Tumour Angiogenesis Using Pattern Recognition. University of Heidelberg
Kaster, F O (2011). Image Analysis for the Life Sciences - Computer-assisted Tumor Diagnostics and Digital Embryomics. University of Heidelberg
Kaster, F O, Kelm, B Michael, Zechmann, C M, Weber, M - A, Hamprecht, F A and Nix, O (2009). Classification of Spectroscopic Images in the DIROlab Environment. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany. Springer. 25/V 252--255PDF icon Technical Report (145.73 KB)
Kaster, F O, Weber, M - A and Hamprecht, F A (2011). Comparative Validation of Graphical Models for Learning Tumor Segmentations from Noisy Manual Annotations. LNCS. Springer, Heidelberg. LNCS 6533 74-85PDF icon Technical Report (544.56 KB)
Kaster, F O, Kassemeyer, S, Merkel, B, Nix, O and Hamprecht, F A (2010). An object-oriented library for systematic training and comparison of classifiers for computer-assisted tumor diagnosis from MRSI measurements. Bildverarbeitung für die Medizin 2010 -- Algorithmen, Systeme, Anwendungen. Springer. 97-101PDF icon Technical Report (1.12 MB)
Kaster, F O, Merkel, B, Nix, O and Hamprecht, F A (2011). An object-oriented library for systematic training and comparison of classifiers for computer-assisted tumor diagnosis from MRSI measurements. Computer Science - Research and Development. 26 65-85PDF icon Technical Report (808.16 KB)
Kauppi, J P, Kandemir, M, Saarinen, V M, Hirvenkari, L, Parkkonen, L, Klami, A, Hari, R and Kaski, S (2015). Towards brain-activity-controlled information retrieval: Decoding image relevance from MEG signals. NeuroImage. 112 288-298PDF icon Technical Report (2.39 MB)
Kausler, B X (2013). Tracking-by-Assignment as a Probabilistic Graphical Model with Applications in Developmental Biology. University of Heidelberg
Kausler, B X (2010). Modeling Of Spectral Peaks For Mass-Spectrometry-Based Proteomics. Universities of Karlsruhe and Heidelberg
Kausler, B X, Schiegg, M, Andres, B, Lindner, M, Köthe, U, Leitte, H, Wittbrodt, J, Hufnagel, L and Hamprecht, F A (2012). A Discrete Chain Graph Model for 3d+t Cell Tracking with High Misdetection Robustness. ECCV 2012. Proceedings. 7574 144-157PDF icon Technical Report (809.07 KB)
Kawetzki, D (2018). Semantic Segmentation Of Urban Scenes Using Deep Learning. Heidelberg University
Kelm, B Michael (2007). Evaluation of Vector-Valued Clinical Image Data Using Probabilistic Graphical Models: Quantification and Pattern Recognition. University of HeidelbergPDF icon Technical Report (4.89 MB)
Kelm, B Michael, Kaster, F O, Henning, A, Weber, M - A, Bachert, P, Bösinger, P, Hamprecht, F A and Menze, B H (2011). Using Spatial Prior Knowledge in the Spectral Fitting of Magnetic Resonance Spectroscopic Images. NMR in Biomedicine. 25(1) 1-13PDF icon Technical Report (1.94 MB)
Kelm, B Michael, Müller, N, Menze, B H and Hamprecht, F A (2006). Bayesian Estimation of Smooth Parameter Maps for Dynamic Contrast-Enhanced MR Images with Block-ICM. Proc Computer Vision and Pattern Recognition Workshop (Mathematical Methods in Biomedical Image Analysis). IEEE Computer Society. 96-103PDF icon Technical Report (232.69 KB)

Pages