Publications

Export 1965 results:
Author Title [ Type(Desc)] Year
Journal Article
Ozlu, N, Monigatti, F, Renard, B Y, Field, C M, Steen, H, Mitchison, T J and Steen, J J (2009). Binding partner switching on microtubules and aurora-B in the mitosis to cytokinesis transition. Molecular & Cellular Proteomics
Bendinger, A L, Debus, C, Glowa, C, Karger, C P, Peter, J and Storath, M (2019). Bolus arrival time estimation in dynamic contrast-enhanced magnetic resonance imaging of small animals based on spline models, in press. Physics in Medicine and Biology. 64
Lempitsky, V, Blake, A and Rother, C (2012). Branch-and-mincut: Global optimization for image segmentation with high-level priors. Journal of Mathematical Imaging and Vision. 44 315–329
Mersmann, S, Seitel, A, Erz, M, Jähne, B, Nickel, F, Mieth, M, Mehrabi, A and Maier-Hein, L (2013). Calibration of time-of-flight cameras for accurate intraoperative surface reconstruction. Med. Phys. 40 082701
Kleesiek, J, Morshuis, J Nikolas, Isensee, F, Deike-Hofmann, K, Paech, D, Kickingereder, P, Köthe, U, Rother, C, Forsting, M, Wick, W, Bendszus, M, Schlemmer, H Peter and Radbruch, A (2019). Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study. Investigative Radiology. 54 653–660
Hamprecht, F A, Thiel, W and van Gunsteren, W F (2002). Chemical library subset selection algorithms: a unified derivation using spatial statistics. Journal of Chemical Information and Computer Sciences. 42 414-428
Lenzen, F, Becker, F, Lellmann, J, Petra, S and Schnörr, C (2013). A Class of Quasi-Variational Inequalities for Adaptive Image Denoising and Decomposition. Computational Optimization and Applications (COAP). 54 (2) 371-398
Lenzen, F, Becker, F, Lellmann, J, Petra, S and Schnörr, C (2013). A class of quasi-variational inequalities for adaptive image denoising and decomposition. Computational Optimization and Applications. Springer Netherlands. 54 371-398. http://dx.doi.org/10.1007/s10589-012-9456-0PDF icon Technical Report (748.66 KB)
Geese, M, Jähne, B and Ruhnau, P (2012). CNN Based Dark Signal Non-Uniformity Estimation. CNNA. 1-6
Breitenreicher, D, Lellmann, J and Schnörr, C (2013). COAL: a generic modelling and prototyping framework for convex optimization problems of variational image analysis. Optimization Methods and Software. 28 1081-1094. http://www.tandfonline.com/doi/abs/10.1080/10556788.2012.672571PDF icon Technical Report (1.69 MB)
Jähne, B, Schmidt, M and Rocholz, R (2005). Combined optical slope/height measurements of short wind waves: principles and calibration. Meas. Sci. Technol. 16 1937--1944
Neumann, J, Schnörr, C and Steidl, G (2005). Combined SVM-based Feature Selection and Classification. Machine Learning. 61 129-150
Baust, M, Weinmann, A, Wieczorek, M, Lasser, T, Storath, M and Navab, N (2016). Combined Tensor Fitting and TV Regularization in Diffusion Tensor Imaging based on a Riemannian Manifold Approach. IEEE Transactions on Medical Imaging. 35 1972–1989PDF icon Technical Report (8.65 MB)
Nagel, L, Krall, K Ellen and Jähne, B (2015). Comparative heat and gas exchange measurements in the Heidelberg Aeolotron, a large annular wind-wave tank. Ocean Sci. 11 111--120
Nagel, L, Krall, K Ellen and Jähne, B (2014). Comparative heat and gas exchange measurements in the Heidelberg Aeolotron, a large annular wind-wave tank. Ocean Sci. Discuss. 11 1691--1718
Szeliski, R, Zabih, R, Scharstein, D, Veksler, O, Kolmogorov, V, Agarwala, A, Tappen, M and Rother, C (2008). A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Transactions on Pattern Analysis and Machine Intelligence. Springer-Verlag. 30 1068–1080. http://vision.middlebury.edu/MRF.
Szeliski, R, Zabih, R, Scharstein, D, Veksler, O, Kolmogorov, V, Agarwala, A, Tappen, M and Rother, C (2008). A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Transactions on Pattern Analysis and Machine Intelligence. 30 1068–1080
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184. http://hci.iwr.uni-heidelberg.de/opengm2/
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. Int.~J.~Comp.~VisionPDF icon Technical Report (5.12 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. CoRR. abs/1404.0533. http://hci.iwr.uni-heidelberg.de/opengm2/PDF icon Technical Report (3.32 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 1-30PDF icon Technical Report (1.5 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. CoRR. http://arxiv.org/abs/1404.0533
Lange, P A, Jähne, B, Tschiersch, J and Ilmberger, J (1982). Comparison between an amplitude-measuring wire and a slope-measuring laser water wave gauge. Rev. Sci. Instrum. 53 651--655
Weber, C, Zechmann, C M, Kelm, B Michael, Zamecnik, R, Hendricks, D, Waldherr, R, Hamprecht, F A, Delorme, S, Bachert, P and Ikinger, U (2007). Comparison of correctness of manuel and automatic evaluation of MR-spectrum with prostrate cancer. Der Urologe. 46 1252
Marxen, M, Sullivan, P E, Loewen, M R and Jähne, B (2000). Comparison of Gaussian particle center estimators and the achievable measurement density for particle tracking velocimetry. Exp. Fluids. 29 145-153
Menze, B H, Kelm, B Michael, Masuch, R, Himmelreich, U, Bachert, P, Petrich, W and Hamprecht, F A (2009). A Comparison of Random Forest and its Gini Importance with Standard Chemometric Methods for the Feature Selection and Classification of Spectral Data. BMC Bioinformatics. 10:213PDF icon Technical Report (675 KB)
Schnörr, (1992). Computation of Discontinuous Optical Flow by Domain Decomposition and Shape Optimization. ijcv. 8 153–165
Rathke, F and Schnörr, C (2015). A Computational Approach to Log-Concave Density Estimation. An. St. Univ. Ovidius Constanta. 23 151-166
Rathke, F and Schnörr, C (2015). A Computational Approach to Log-Concave Density Estimation. An. St. Univ. Ovidius Constanta. 23 151-166PDF icon Technical Report (1.07 MB)
Kirchner, M, Renard, B Y, Köthe, U, Pappin, D J, Hamprecht, F A, Steen, J A J and Steen, H (2010). Computational Protein Profile Similarity Screening for Quantitative Mass Spectrometry Experiments. Bioinformatics. 26 (1) 77-83PDF icon Technical Report (380.19 KB)
Kandemir, M and Hamprecht, F A (2014). Computer-aided diagnosis from weak supervision: A benchmarking study. Computerized Medical Imaging and Graphics. 42 44-50PDF icon Technical Report (4.28 MB)
Haußecker, H and Fleet, D J (2001). Computing optical flow with physical models of brightness variation. IEEE Trans. Pattern Analysis Machine Intelligence. 23 661--673
Hanselmann, M, Kirchner, M, Renard, B Y, Amstalden, E R, Glunde, K, Heeren, R M A and Hamprecht, F A (2008). Concise Representation of MS Images by Probabilistic Latent Semantic Analysis. Analytical Chemistry. 80 9649-9658PDF icon Technical Report (3.91 MB)

Pages