Publications

Export 1965 results:
Author Title Type [ Year(Desc)]
2013
T. Kröger, Mikula, S., Denk, W., Köthe, U., and Hamprecht, F. A., Learning to Segment Neurons with Non-local Quality Measures, in MICCAI 2013. Proceedings, part II, 2013, vol. 8150, pp. 419-427.PDF icon Technical Report (2.87 MB)
B. Antic, Milbich, T., and Ommer, B., Less is More: Video Trimming for Action Recognition, in Proceedings of the IEEE International Conference on Computer Vision, Workshop on Understanding Human Activities: Context and Interaction, 2013, p. 515--521.PDF icon Technical Report (984.89 KB)
B. Schmitzer and Schnörr, C., Modelling convex shape priors and matching based on the Gromov-Wasserstein distance, Journal of Mathematical Imaging and Vision, vol. 46, pp. 143-159, 2013.PDF icon Technical Report (957.78 KB)
B. Schmitzer and Schnörr, C., Modelling convex shape priors and matching based on the Gromov-Wasserstein distance, Journal of Mathematical Imaging and Vision, vol. 46, pp. 143-159, 2013.
A. Monroy, Bell, P., and Ommer, B., A Morphometric Approach to Reception Analysis of Premodern Art, in Scientific Computing & Cultural Heritage, 2013.PDF icon Technical Report (17.75 MB)
M. Becker, Baron, M., Kondermann, D., Bussler, M., and Helzle, V., Movie Dimensionalization Via Sparse User Annotations, in submitted to 3DTV-Con, 2013.
D. Kondermann and Becker, M., Movie Dimensionalization Via Sparse User Annotations, in submitted to ICCV, 2013.
P. Bell, Schlecht, J., and Ommer, B., Nonverbal Communication in Medieval Illustrations Revisited by Computer Vision and Art History, Visual Resources Journal, Special Issue on Digital Art History, vol. 29, p. 26--37, 2013.
B. Schmitzer and Schnörr, C., Object Segmentation by Shape Matching with Wasserstein Modes, in Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2013), 2013, pp. 123-136.
D. Kiefhaber, Rocholz, R., Bauer, P. Salomon, and Jähne, B., Optical measurement of surface ocean waves, in 3rd EOS Topical Meeting on Blue Photonics --- Optics in the Sea, 2013.
M. Atif, Optimal Depth Estimation and Extended Depth of Field from Single Images by Computational Imaging using Chromatic Aberrations. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg, 2013.
M. Atif, Optimal Depth Estimation and Extended Depth of Field from Single Images by Computational Imaging using Chromatic Aberrations, vol. Dissertation. IWR, Univ. Heidelberg, 2013.
M. Atif and Jähne, B., Optimal Depth Estimation from a Single Image by Computational Imaging Using Chromatic Aberrations, tm --- Technisches Messen, vol. 80, p. 343--348, 2013.
J. Lellmann, Lenzen, F., and Schnörr, C., Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem, Journal of Mathematical Imaging and Vision, vol. 47 (3), pp. 239-257, 2013.
C. S. Garbe and Ommer, B., Parameter Estimation in Image Processing and Computer Vision, in Model Based Parameter Estimation: Theory and Applications, Springer, 2013, p. 311--334.PDF icon Technical Report (928 KB)
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision SSVM, 2013, pp. 477-488.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Scale Space and Variational Methods (SSVM 2013), 2013.PDF icon Technical Report (159.71 KB)
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Scale Space and Variational Methods (SSVM 2013), 2013.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Persistency by Pruning for General Graphical Models, in submitted to NIPS 2013., 2013.
M. Geese, Ruhnau, P., and Jähne, B., PRNU and DSNU Maximum Likelihood Estimation Using Sensor Statistics, tm --- Technisches Messen, vol. 80, p. 321--328, 2013.
S. Wanner and Goldlücke, B., Reconstructing Reflective and Transparent Surfaces from Epipolar Plane Images, Pattern Recognition. Springer, p. 1--10, 2013.
B. Ommer, The Role of Shape in Visual Recognition, in Shape Perception in Human Computer Vision: An Interdisciplinary Perspective, Springer, 2013, p. 373--385.PDF icon Technical Report (8.18 MB)
F. Herrmannsdörfer, SimpleSTORM an Efficient Selfcalibrating Reconstruction Algorithm for Single and Multi-Channel Localisation Microscopy, University of Heidelberg, 2013.
S. Meister, Nair, R., and Kondermann, D., Simulation of Time-of-Flight Sensors using Global Illumination, in Vision, Modeling and Visualization (VMV), 2013 International Workshop on. Proceedings, 2013, pp. 33-40.
K. Berger, Meister, S., Nair, R., and Kondermann, D., A State of the Art Report on Kinect Sensor Setups in Computer Vision, in Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications, 2013, vol. 8200, pp. 257-272.
R. Nair, Ruhl, K., Lenzen, F., Meister, S., Schäfer, H., Garbe, C. S., Eisemann, M., and Kondermann, D., A Survey on Time-of-Flight Stereo Fusion, in Time-of-Flight Imaging: Algorithms, Sensors and Applications, 2013, vol. 8022, pp. 105-127.
R. Nair, Ruhl, K., Lenzen, F., Meister, S., Schäfer, H., Garbe, C. S., Eisemann, M., Magnor, M., and Kondermann, D., A Survey on Time-of-Flight Stereo Fusion, Time-of-Flight and Depth Imaging: Sensors, Algorithms, and Applications, vol. 8200. Springer, pp. 105-127, 2013.PDF icon Technical Report (6.05 MB)
R. Nair, Ruhl, K., Lenzen, F., Meister, S., Schäfer, H., Garbe, C. S., Eisemann, M., Magnor, M., and Kondermann, D., A Survey on Time-of-Flight Stereo Fusion, Time-of-Flight and Depth Imaging: Sensors, Algorithms, and Applications, vol. 8200. Springer, pp. 105-127, 2013.
D. Lefloch, Nair, R., Lenzen, F., Schäfer, H., Streeter, L., Cree, M. J., Koch, R., and Kolb, A., Technical Foundation and Calibration Methods for Time-of-Flight Cameras, Time-of-Flight and Depth Imaging: Sensors, Algorithms, and Applications, vol. 8200. Springer, pp. 3-24, 2013.
D. Lefloch, Nair, R., Lenzen, F., Schäfer, H., Streeter, L., and Cree, M. J., Technical Foundation and Calibration Methods for Time-of-Flight Cameras, in Time-of-Flight Imaging: Algorithms, Sensors and Applications, 2013, vol. 8200.
B. Goldlücke, Strekalovskiy, E., and Cremers, D., Tight convex relaxations for vector-valued labeling, SIAM Journal on Imaging Sciences, 2013.
J. Davis, Jähne, B., Kolb, A., Raskar, R., Theobalt, C., Davis, J., Jähne, B., Raskar, R., Theobalt, C., and Kolb, A., Eds., Time-of-Flight Imaging: Algorithms, Sensors and Applications (Dagstuhl Seminar 12431), Dagstuhl Reports, vol. 2, p. 79--104, 2013.
P. Yarlagadda, Monroy, A., Carque, B., and Ommer, B., Towards a Computer-based Understanding of Medieval Images, in Scientific Computing & Cultural Heritage, Springer, 2013, p. 89--97.
J. H. Kappes, Speth, M., Reinelt, G., and Schnörr, C., Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization, in CVPR, 2013.PDF icon Technical Report (623.84 KB)
J. H. Kappes, Speth, M., Reinelt, G., and Schnörr, C., Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization, in CVPR, 2013.

Pages