Publications

Export 1965 results:
Author Title Type [ Year(Desc)]
2017
A. Vianello, Manfredi, G., Diebold, M., and Jähne, B., 3D reconstruction by a combined structure tensor and Hough transform light field approach, tm - Technisches Messen, 2017.
M. Kandemir, Hamprecht, F. A., Wojek, C., and Schmidt, U., Active machine learning for training an event classification, Patent, Patent Number WO2017032775 A1, 2017.
J. Kunz, Active Thermography as a Tool for the Estimation of Air-Water Transfer Velocities, vol. Dissertation. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg, 2017.
O. Hosseini Jafari, Groth, O., Kirillov, A., Yang, M. Ying, and Rother, C., Analyzing modular CNN architectures for joint depth prediction and semantic segmentation, in Proceedings - IEEE International Conference on Robotics and Automation, 2017, pp. 4620–4627.
L. Gerhard Holtmann, Aufbau eines aktiven Thermographiesystems zur Messung des Geschwindigkeitsgradienten in der windgetriebenen wasserseitigen viskosen Grenzschicht, Institut für Umweltphysik, Universität Heidelberg, Germany, 2017.
H. Abu Alhaija, Mustikovela, S. Karthik, Mescheder, L., Geiger, A., and Rother, C., Augmented reality meets deep learning for car instance segmentation in urban scenes, in British Machine Vision Conference 2017, BMVC 2017, 2017.
A. Behl, Hosseini Jafari, O., Mustikovela, S. Karthik, Abu Alhaija, H., Rother, C., and Geiger, A., Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?, in Proceedings of the IEEE International Conference on Computer Vision, 2017, vol. 2017-Octob, pp. 2593–2602.
A. Behl, Hosseini Jafari, O., Mustikovela, S. Karthik, Abu Alhaija, H., Rother, C., and Geiger, A., Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?, in Proceedings of the IEEE International Conference on Computer Vision, 2017, vol. 2017-Octob, pp. 2593–2602.
L. Flothow, Bubble Characteristics from Breaking Waves in Fresh Water and Simulated Seawater, Institut für Umweltphysik, Universität Heidelberg, Germany, 2017.
M. Brosowsky, Cluster Resolving for Animal Tracking: Multi Hypotheses Tracking with Part Based Model for Object Hypotheses Generation and Pose Estimation, University of Heidelberg, 2017.
R. Dalitz, Petra, S., and Schnörr, C., Compressed Motion Sensing, in Proc. SSVM, 2017, vol. 10302.
G. Krause, Correlation of Performance and Entropy in Active Learning with Convolutional Neural Networks, Heidelberg University, 2017.
S. Peter, Diego, F., Hamprecht, F. A., and Nadler, B., Cost-efficient Gradient Boosting, NIPS, poster. 2017.
D. Schlesinger, Jug, F., Myers, G., Rother, C., and Kainmueller, D., Crowd sourcing image segmentation with iaSTAPLE, in Proceedings - International Symposium on Biomedical Imaging, 2017, pp. 401–405.
N. Ufer and Ommer, B., Deep Semantic Feature Matching, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.PDF icon article (8.88 MB)
M. Bautista, Sanakoyeu, A., and Ommer, B., Deep Unsupervised Similarity Learning using Partially Ordered Sets, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.PDF icon deep_unsupervised_similarity_learning_cvpr_2017_paper.pdf (905.82 KB)
H. Schilling, Diebold, M., Gutsche, M., and Jähne, B., On the design of a fractal calibration pattern for improved camera calibration, tm - Technisches Messen, vol. 84, pp. 440–451, 2017.
S. Ramos, Gehrig, S., Pinggera, P., Franke, U., and Rother, C., Detecting unexpected obstacles for self-driving cars: Fusing deep learning and geometric modeling, in IEEE Intelligent Vehicles Symposium, Proceedings, 2017, pp. 1025–1032.
C. Haubold, Uhlmann, V., Unser, M., and Hamprecht, F. A., Diverse M-best Solutions by Dynamic Programming, GCPR. Proceedings, vol. LNCS 10496. Springer, pp. 255-267, 2017.
V. Uhlmann, Haubold, C., Hamprecht, F. A., and Unser, M., Diverse Shortest Paths for Bioimage Analysis, Bioinformatics, pp. 1-3, 2017.
E. Brachmann, Krull, A., Nowozin, S., Shotton, J., Michel, F., Gumhold, S., and Rother, C., DSAC - Differentiable RANSAC for camera localization, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 2492–2500.
M. Storath, Brandt, C., Hofmann, M., Knopp, T., Salamon, J., Weber, A., and Weinmann, A., Edge preserving and noise reducing reconstruction for magnetic particle imaging, IEEE Transactions on Medical Imaging, vol. 36, no. 1, pp. 74 - 85, 2017.PDF icon Technical Report (1.43 MB)
M. Storath, Rickert, D., Unser, M., and Weinmann, A., Fast segmentation from blurred data in 3D fluorescence microscopy, IEEE Transactions on Image Processing, vol. 26, no. 10, 2017.
F. Aström and Schnörr, C., A Geometric Approach for Color Image Regularization, Comp. Vision Image Understanding, vol. 165, pp. 43–59, 2017.
A. Zern, Rohr, K., and Schnörr, C., Geometric Image Labeling with Global Convex Labeling Constraints, in Proc. EMMCVPR, 2017.
F. Michel, Kirillov, A., Brachmann, E., Krull, A., Gumhold, S., Savchynskyy, B., and Rother, C., Global hypothesis generation for 6D object pose estimation, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 115–124.
M. Zisler, Savarino, F., Petra, S., and Schnörr, C., Gradient Flows on a Riemannian Submanifold for Discrete Tomography, in Proc. GCPR, 2017.
R. Hühnerbein, Savarino, F., Aström, F., and Schnörr, C., Image Labeling Based on Graphical Models Using Wasserstein Messages and Geometric Assignment. 2017.
F. Aström, Petra, S., Schmitzer, B., and Schnörr, C., Image Labeling by Assignment, J. Math. Imag. Vision, vol. 58, pp. 211–238, 2017.
M. Zisler, Aström, F., Petra, S., and Schnörr, C., Image Reconstruction by Multilabel Propagation, in Proc. SSVM, 2017, vol. 10302.
J. Hennies, Improvement and Validation of Neural EM Volume Image Segmentation by High-Level Information, University of Heidelberg, 2017.
A. Kirillov, Levinkov, E., Andres, B., Savchynskyy, B., and Rother, C., InstanceCut: From edges to instances with MultiCut, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 7322–7331.
A. Haller, Interactive Watershed Based Segmentation for Biological Images, University of Heidelberg, 2017.
E. Levinkov, Uhrig, J., Tang, S., Omran, M., Insafutdinov, E., Kirillov, A., Rother, C., Brox, T., Schiele, B., and Andres, B., Joint graph decomposition & node labeling: Problem, algorithms, applications, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 1904–1912.
A. Kirillov, Schlesinger, D., Zheng, S., Savchynskyy, B., Torr, P. H. S., and Rother, C., Joint training of generic CNN-CRF models with stochastic optimization, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10112 LNCS, pp. 221–236.

Pages