2017
M. Kandemir, Hamprecht, F. A., Wojek, C., and Schmidt, U.,
“Active machine learning for training an event classification”,
Patent, Patent Number WO2017032775 A1, 2017.
J. Kunz,
“Active Thermography as a Tool for the Estimation of Air-Water Transfer Velocities”, vol. Dissertation. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg, 2017.
O. Hosseini Jafari, Groth, O., Kirillov, A., Yang, M. Ying, and Rother, C.,
“Analyzing modular CNN architectures for joint depth prediction and semantic segmentation”, in
Proceedings - IEEE International Conference on Robotics and Automation, 2017, pp. 4620–4627.
H. Abu Alhaija, Mustikovela, S. Karthik, Mescheder, L., Geiger, A., and Rother, C.,
“Augmented reality meets deep learning for car instance segmentation in urban scenes”, in
British Machine Vision Conference 2017, BMVC 2017, 2017.
A. Behl, Hosseini Jafari, O., Mustikovela, S. Karthik, Abu Alhaija, H., Rother, C., and Geiger, A.,
“Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?”, in
Proceedings of the IEEE International Conference on Computer Vision, 2017, vol. 2017-Octob, pp. 2593–2602.
A. Behl, Hosseini Jafari, O., Mustikovela, S. Karthik, Abu Alhaija, H., Rother, C., and Geiger, A.,
“Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?”, in
Proceedings of the IEEE International Conference on Computer Vision, 2017, vol. 2017-Octob, pp. 2593–2602.
D. Schlesinger, Jug, F., Myers, G., Rother, C., and Kainmueller, D.,
“Crowd sourcing image segmentation with iaSTAPLE”, in
Proceedings - International Symposium on Biomedical Imaging, 2017, pp. 401–405.
N. Ufer and Ommer, B.,
“Deep Semantic Feature Matching”, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
article (8.88 MB) H. Schilling, Diebold, M., Gutsche, M., and Jähne, B.,
“On the design of a fractal calibration pattern for improved camera calibration”,
tm - Technisches Messen, vol. 84, pp. 440–451, 2017.
S. Ramos, Gehrig, S., Pinggera, P., Franke, U., and Rother, C.,
“Detecting unexpected obstacles for self-driving cars: Fusing deep learning and geometric modeling”, in
IEEE Intelligent Vehicles Symposium, Proceedings, 2017, pp. 1025–1032.
C. Haubold, Uhlmann, V., Unser, M., and Hamprecht, F. A.,
“Diverse M-best Solutions by Dynamic Programming”,
GCPR. Proceedings, vol. LNCS 10496. Springer, pp. 255-267, 2017.
V. Uhlmann, Haubold, C., Hamprecht, F. A., and Unser, M.,
“Diverse Shortest Paths for Bioimage Analysis”,
Bioinformatics, pp. 1-3, 2017.
E. Brachmann, Krull, A., Nowozin, S., Shotton, J., Michel, F., Gumhold, S., and Rother, C.,
“DSAC - Differentiable RANSAC for camera localization”, in
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 2492–2500.
M. Storath, Brandt, C., Hofmann, M., Knopp, T., Salamon, J., Weber, A., and Weinmann, A.,
“Edge preserving and noise reducing reconstruction for magnetic particle imaging”,
IEEE Transactions on Medical Imaging, vol. 36, no. 1, pp. 74 - 85, 2017.
Technical Report (1.43 MB) M. Storath, Rickert, D., Unser, M., and Weinmann, A.,
“Fast segmentation from blurred data in 3D fluorescence microscopy”,
IEEE Transactions on Image Processing, vol. 26, no. 10, 2017.
F. Michel, Kirillov, A., Brachmann, E., Krull, A., Gumhold, S., Savchynskyy, B., and Rother, C.,
“Global hypothesis generation for 6D object pose estimation”, in
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 115–124.
F. Aström, Petra, S., Schmitzer, B., and Schnörr, C.,
“Image Labeling by Assignment”,
J. Math. Imag. Vision, vol. 58, pp. 211–238, 2017.
M. Zisler, Aström, F., Petra, S., and Schnörr, C.,
“Image Reconstruction by Multilabel Propagation”, in
Proc. SSVM, 2017, vol. 10302.
A. Kirillov, Levinkov, E., Andres, B., Savchynskyy, B., and Rother, C.,
“InstanceCut: From edges to instances with MultiCut”, in
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 7322–7331.
E. Levinkov, Uhrig, J., Tang, S., Omran, M., Insafutdinov, E., Kirillov, A., Rother, C., Brox, T., Schiele, B., and Andres, B.,
“Joint graph decomposition & node labeling: Problem, algorithms, applications”, in
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 1904–1912.
A. Kirillov, Schlesinger, D., Zheng, S., Savchynskyy, B., Torr, P. H. S., and Rother, C.,
“Joint training of generic CNN-CRF models with stochastic optimization”, in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10112 LNCS, pp. 221–236.