Publications

Export 1965 results:
Author Title Type [ Year(Desc)]
2017
M. Storath, Weinmann, A., and Unser, M., Jump-penalized least absolute values estimation of scalar or circle-valued signals, Information and Inference, vol. 6, no. 3, pp. 225–245, 2017.PDF icon Technical Report (3.4 MB)
L. Schott, Learned Watershed Algorithm: End-to-End Learning of Seeded Segmentation, Heidelberg University, 2017.
S. Wolf, Schott, L., Köthe, U., and Hamprecht, F. A., Learned Watershed: End-to-End Learning of Seeded Segmentation, ICCV. pp. 2030-2038, 2017.PDF icon Technical Report (3.76 MB)
M. Weiler, Learning Steerable Filters for Rotation Equivariant Convolutional Neural Networks, Heidelberg University, 2017.
J. Kruse, Rother, C., Schmidt, U., and Dresden, T. U., Learning to Push the Limits of Efficient FFT-based Image Deconvolution - Supplemental Material, 2017.
J. Kruse, Rother, C., and Schmidt, U., Learning to Push the Limits of Efficient FFT-Based Image Deconvolution, in Proceedings of the IEEE International Conference on Computer Vision, 2017, vol. 2017-Octob, pp. 4596–4604.
M. Bautista, Fuchs, P., and Ommer, B., Learning Where to Drive by Watching Others, Proceedings of the German Conference Pattern Recognition, vol. 1. Springer-Verlag, Basel, 2017.
E. Bodnariuc, Petra, S., Schnörr, C., and Voorneveld, J., A Local Spatio-Temporal Approach to Plane Wave Ultrasound Particle Image Velocimetry, in Proc. GCPR, 2017.
F. Rathke, Desana, M., and Schnörr, C., Locally Adaptive Probabilistic Models for Global Segmentation of Pathological OCT Scans, MICCAI. Proceedings. pp. 177-184, 2017.PDF icon Technical Report (4.79 MB)
F. Rathke, Desana, M., and Schnörr, C., Locally Adaptive Probabilistic Models for Global Segmentation of Pathological OCT Scans, in Proc. MICCAI, 2017.
B. Brattoli, Büchler, U., Wahl, A. - S., Schwab, M. E., and Ommer, B., LSTM Self-Supervision for Detailed Behavior Analysis, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.PDF icon Article (8.75 MB)
F. Aström, Hühnerbein, R., Savarino, F., Recknagel, J., and Schnörr, C., MAP Image Labeling Using Wasserstein Messages and Geometric Assignment, in Proc. SSVM, 2017, vol. 10302.
M. Kandemir, Hamprecht, F. A., Wojek, C., and Schmidt, U., Maschinelles Lernen, Patent, Patent Number WO2017032775A1, 2017.PDF icon Technical Report (317.04 KB)
B. Balluff, Hanselmann, M., and Heeren, R. M. A., Mass spectrometry imaging for the investigation of intratumor heterogeneity, in Advances in Cancer Research, vol. 134, Elsevier, 2017, pp. 201-230.
C. Haltebourg, Modeling of Heat Exchange Across the Ocean Surface as Measured by Active Thermography, vol. Dissertation. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg, 2017.
T. Beier, Pape, C., Rahaman, N., Prange, T., Berg, S., Bock, D., Cardona, A., Knott, G. W., Plaza, S. M., Scheffer, L. K., Köthe, U., Kreshuk, A., and Hamprecht, F. A., Multicut brings automated neurite segmentation closer to human performance, Nature Methods, vol. 14, no. 2, pp. 101-102, 2017.
N. Krasowki, Beier, T., Knott, G. W., Köthe, U., Hamprecht, F. A., and Kreshuk, A., Neuron Segmentation with High-Level Biological Priors, IEEE Transactions on Medical Imaging, vol. 37, no. 4, 2017.
F. Savarino, Hühnerbein, R., Aström, F., Recknagel, J., and Schnörr, C., Numerical Integration of Riemannian Gradient Flows for Image Labeling, in Proc. SSVM, 2017, vol. 10302.
V. Ulman, Maška, M., Magnusson, K. E. G., Ronneberger, O., Haubold, C., Harder, N., Matula, P., Matula, P., Svoboda, D., Radojevic, M., Smal, I., Rohr, K., Jaldén, J., Blau, H. M., Dzyubachyk, O., Lelieveldt, B., Xiao, P., Li, Y., Cho, S. - Y., Dufour, A., Olivo-Marin, J. C., Reyes-Aldasoro, C. C., Solis-Lemus, J. A., Bensch, R., Brox, T., Stegmaier, J., Mikut, R., Wolf, S., Hamprecht, F. A., Esteves, T., Quelhas, P., Demirel, Ö., Malström, L., Jug, F., Tomančák, P., Meijering, E., Muñoz-Barrutia, A., Kozubek, M., and Ortiz-de-Solorzano, C., An Objective Comparison of Cell Tracking Algorithms, Nature Methods, vol. 14, no. 12, pp. 1141-1152, 2017.PDF icon Technical Report (4.24 MB)
A. - S. Wahl, Büchler, U., Brändli, A., Brattoli, B., Musall, S., Kasper, H., Ineichen, B. V., Helmchen, F., Ommer, B., and Schwab, M. E., Optogenetically stimulating the intact corticospinal tract post-stroke restores motor control through regionalized functional circuit formation, Nature Communications, p. (ASW & UB contributed equally; BO and MES contributed equally), 2017.
A. Krull, Brachmann, E., Nowozin, S., Michel, F., Shotton, J., and Rother, C., PoseAgent: Budget-constrained 6D object pose estimation via reinforcement learning, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 2566–2574.
T. Hehn, A probabilistic approach to learn complex differentiable split functions in decision trees using gradient ascent, Heidelberg University, 2017.
D. Massiceti, Krull, A., Brachmann, E., Rother, C., and Torr, P. H. S., Random Forests versus Neural Networks − What's best for camera location. 2017.
A. Vianello, Robust 3D Surface Reconstruction from Light Fields, vol. Dissertation. IWR, Univ. Heidelberg, 2017.
C. Haubold, Scalable Inference for Multi-Target Tracking on Proliferating Cells. University of Heidelberg, 2017.
J. Berger, Lenzen, F., Becker, F., Neufeld, A., and Schnörr, C., {Second-Order Recursive Filtering on the Rigid-Motion Lie Group SE(3) Based on Nonlinear Observations, J. Math. Imag. Vision, vol. 58, pp. 102–129, 2017.
P. Markowsky, Reith, S., Zuber, T. E., König, R., Rohr, K., and Schnörr, C., Segmentation of cell structure using model-based set covering with iterative reweighting, in Proc. ISBI, 2017.
P. Neigel, Self-Similarity Based Detection of Temporal Motifs in Multivariate Signals, Heidelberg University, 2017.
Ö. Sümer, Dencker, T., and Ommer, B., Self-supervised Learning of Pose Embeddings from Spatiotemporal Relations in Videos, in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017.PDF icon Paper (3.98 MB)PDF icon Supplementary Material (3.36 MB)
M. Hullin, Klein, R., Schultz, T., Yao, A., Li, W., Hosseini Jafari, O., and Rother, C., Semantic-Aware Image Smoothing, Vision, Modeling, and Visualization, 2017.
C. Pape, Beier, T., Li, P., Jain, V., Brock, D. D., and Kreshuk, A., Solving Large Multicut Problems for Connectomics via Domain Decomposition, Bioimage Computing Workshop. ICCV. pp. 1-10, 2017.
S. Peter, Kirschbaum, E., Both, M., Campbell, L. A., Harvey, B. K., Heins, C., Durstewitz, D., Diego, F., and Hamprecht, F. A., Sparse convolutional coding for neuronal assembly detection, NIPS, poster. 2017.
A. Rennebaum, Spatio-Temporal Properties of the initial Wave Formation Phase at the Aeolotron, Institut für Umweltphysik, Universität Heidelberg, Germany, 2017.
T. Milbich, Bautista, M., Sutter, E., and Ommer, B., Unsupervised Video Understanding by Reconciliation of Posture Similarities, in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017.
M. Haußmann, Hamprecht, F. A., and Kandemir, M., Variational Bayesian Multiple Instance Learning with Gaussian Processes, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 6570-6579, 2017.PDF icon Technical Report (1.29 MB)

Pages