Publications

Export 1963 results:
[ Author(Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
Peckar, W, Schnörr, C, Rohr, K and Stiehl, H S (1998). Non-Rigid Image Registration Using a Parameter-Free Elastic Model. 9th British Machine Vision Conference (BMVC`98). Southampton/UK. 134–143
Peckar, W, Schnörr, C, Rohr, K and Stiehl, H S (1997). Two-Step Parameter-Free Elastic Image Registration with Prescribed Point Displacements. Proc. 9th Int. Conf. on Image Analysis and Processing (ICIAP'97). Florence, Italy
Peckar, W, Schnörr, C, Rohr, K and Stiehl, H –S (1999). Parameter-Free Elastic Deformation Approach for 2D and 3D Registration Using Prescribed Displacements. J. Math. Imaging and Vision. 10 143–162
Peckar, W, Schnörr, C, Rohr, K, Stiehl, H –S and Spetzger, U (1998). Linear and Incremental Estimation of Elastic Deformations in Medical Registration Using Prescribed Displacements. Machine Graphics & Vision. 7 807–829
Pavlov, P (2008). Analysis of Motion in Scale Space. IWR, Fakultät für Mathematik und Informatik, Univ.\ Heidelberg. http://www.ub.uni-heidelberg.de/archiv/9378
(2005). Variational, Geometric and Level Sets in Computer Vision (VLSM'05). lncs. Springer, Beijing, China. 3752
Papst, M (2019). Development Of A Method For Quantitative Imaging Of Air-Water Gas Exchange. Institut für Umweltphysik, Universität Heidelberg, Germany
Pape, C (2016). Automatic Segmentation Of Neurites From Anisotropic Em-Imaging. University of Heidelberg
Pape, C, Beier, T, Li, P, Jain, V, Brock, D D and Kreshuk, A (2017). Solving Large Multicut Problems for Connectomics via Domain Decomposition. Bioimage Computing Workshop. ICCV. 1-10
Pape, C (2021). Scalable Instance Segmentation for Microscopy. Heidelberg University
Pape, C, Remme, R, Wolny, A, Olberg, S, Wolf, S, Cerrone, L, Cortese, M, Klaus, S, Lucic, B, Ullrich, S, Anders-Össwein, M, Wolf, S, Cerikan, B, Neufeldt, C J, Ganter, M, Schnitzler, P, Merle, U, Lusic, M, Boulant, S, Stanifer, M, Bartenschlager, R, Hamprecht, F A, Kreshuk, A, Tischer, C, Kräusslich, H - G, Müller, B and Laketa, V (2021). Microscopy-based assay for semi-quantitative detection of SARS-CoV-2 specific antibodies in human sera. BioEssays. 43
Pandey, N (2019). Weakly Supervised Semantic Segmentation. Heidelberg University
O
Ozlu, N, Monigatti, F, Renard, B Y, Field, C M, Steen, H, Mitchison, T J and Steen, J J (2009). Binding partner switching on microtubules and aurora-B in the mitosis to cytokinesis transition. Molecular & Cellular Proteomics
Ommer, B (2013). The Role of Shape in Visual Recognition. Shape Perception in Human Computer Vision: An Interdisciplinary Perspective. Springer. 373--385PDF icon Technical Report (8.18 MB)
Ommer, B and Buhmann, J M (2010). Learning the Compositional Nature of Visual Object Categories for Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE. 32 501--516PDF icon Technical Report (2.78 MB)
Ommer, B, Mader, T and Buhmann, J M (2009). Seeing the Objects Behind the Dots: Recognition in Videos from a Moving Camera. International Journal of Computer Vision. Springer. 83 57--71PDF icon Technical Report (9.61 MB)
Ommer, B and Malik, J (2009). Multi-scale Object Detection by Clustering Lines. Proceedings of the IEEE International Conference on Computer Vision. IEEE. 484--491PDF icon Technical Report (3.18 MB)
Ommer, B (2008). Seeing The Objects Behind The Parts: Learning Compositional Models For Visual Recognition. VDM Verlag. http://www.amazon.com/Seeing-Objects-Behind-Parts-Compositional/dp/3639021444/ref=sr_1_1?ie=UTF8&s=books&qid=1232659136&sr=1-1
Ommer, B and Buhmann, J M (2007). Compositional Object Recognition, Segmentation, and Tracking in Video. Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer. 4679 318--333PDF icon Technical Report (2.78 MB)
Ommer, B and Buhmann, J M (2007). Learning the Compositional Nature of Visual Objects. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 1--8PDF icon Technical Report (2.78 MB)
Ommer, B, Sauter, M and M., B J (2006). Learning Top-Down Grouping of Compositional Hierarchies for Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Workshop on Perceptual Organization in Computer Vision. IEEE. 194--194PDF icon Technical Report (358.98 KB)
Ommer, B and Buhmann, J M (2006). Learning Compositional Categorization Models. Proceedings of the European Conference on Computer Vision. Springer. 3953 316--329PDF icon Technical Report (1.35 MB)
Ommer, B and Buhmann, J M (2005). Object Categorization by Compositional Graphical Models. Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer. 3757 235--250PDF icon Technical Report (2.07 MB)
Ommer, B and Buhmann, J M (2003). A Compositionality Architecture for Perceptual Feature Grouping. Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer. 2683 275--290PDF icon Technical Report (2.89 MB)
N
Nowozin, S and Sharp, T (2011). Supplementary Material : Decision Tree Fields. Iccv
Nowozin, S, Rother, C, Bagon, S, Sharp, T, Yao, B and Kohli, P (2011). Decision tree fields. Proceedings of the IEEE International Conference on Computer Vision. 1668–1675
Noffz, K - H, Lay, R, Männer, R, Jähne, B, Jähne, B, Geißler, P and Haußecker, H (1999). Field Programmable Gate Array image processing. Handbook of Computer Vision and Applications. Academic Press. 3: Systems and Applications
Nielsen, R (2004). Gasaustausch - Entwicklung und Ergebnis eines schnellen Massenbilanzverfahrens zur Messung der Austauschparameter. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ.\ Heidelberg. http://www.ub.uni-heidelberg.de/archiv/5032
Niegel, D (2010). Messung Konvektionsgetriebener Transfergeschwindigkeit Von Sauerstoff An Der Luft-Wasser-Grenzfläche. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ.\ Heidelberg
Nicola, A, Petra, S, Popa, C and Schnörr, C (2009). On A General Extending And Constraining Procedure For Linear Iterative Methods. IWR, University of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/9761
Nicola, A, Petra, S, Popa, C and Schnörr, C (2011). A general extending and constraining procedure for linear iterative methods. Int. J. Comp. Math. http://dx.doi.org/10.1080/00207160.2011.634002
Nicola, A, Petra, S, Popa, C and Schnörr, C (2009). On A General Extending And Constraining Procedure For Linear Iterative Methods. IWR, University of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/9761PDF icon Technical Report (799.47 KB)
Nicola, A, Petra, S, Popa, C and Schnörr, C (2011). A general extending and constraining procedure for linear iterative methods. Int.~J.~Comp.~Math. http://dx.doi.org/10.1080/00207160.2011.634002PDF icon Technical Report (633.79 KB)
Nickisch, H, Rother, C, Kohli, P and Rhemann, C (2010). Learning an Interactive Segmentation System - Supplemental Material
Nguyen, M Hoai, Torresani, L, De La Torre, F and Rother, C (2009). Weakly supervised discriminative localization and classification: A joint learning process. Proceedings of the IEEE International Conference on Computer Vision. 1925–1932

Pages