Publications
Journal Article
Arnab, A, Zheng, S, Jayasumana, S, Romera-paredes, B, Kirillov, A, Savchynskyy, B, Rother, C, Kahl, F and Torr, P (2018).
Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation.
Cvpr.
XX 1–15.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.8889&rep=rep1&type=pdf%0Ahttp://dx.doi.org/10.1109/CVPR.2012.6248050 Hanselmann, M, Kirchner, M, Renard, B Y, Amstalden, E R, Glunde, K, Heeren, R M A and Hamprecht, F A (2008).
Concise Representation of MS Images by Probabilistic Latent Semantic Analysis.
Analytical Chemistry.
80 9649-9658
Technical Report (3.91 MB) Kirchner, M, Renard, B Y, Köthe, U, Pappin, D J, Hamprecht, F A, Steen, J A J and Steen, H (2010).
Computational Protein Profile Similarity Screening for Quantitative Mass Spectrometry Experiments.
Bioinformatics.
26 (1) 77-83
Technical Report (380.19 KB) Menze, B H, Kelm, B Michael, Masuch, R, Himmelreich, U, Bachert, P, Petrich, W and Hamprecht, F A (2009).
A Comparison of Random Forest and its Gini Importance with Standard Chemometric Methods for the Feature Selection and Classification of Spectral Data.
BMC Bioinformatics.
10:213 Technical Report (675 KB) Weber, C, Zechmann, C M, Kelm, B Michael, Zamecnik, R, Hendricks, D, Waldherr, R, Hamprecht, F A, Delorme, S, Bachert, P and Ikinger, U (2007).
Comparison of correctness of manuel and automatic evaluation of MR-spectrum with prostrate cancer.
Der Urologe.
46 1252
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015).
A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems.
Int.~J.~Comp.~Vision Technical Report (5.12 MB) Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014).
A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems.
CoRR.
abs/1404.0533.
http://hci.iwr.uni-heidelberg.de/opengm2/ Technical Report (3.32 MB) Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015).
A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems.
International Journal of Computer Vision.
115 155–184.
http://hci.iwr.uni-heidelberg.de/opengm2/ Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015).
A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems.
International Journal of Computer Vision.
115 155–184
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015).
A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems.
International Journal of Computer Vision.
115 155–184
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015).
A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems.
International Journal of Computer Vision. 1-30
Technical Report (1.5 MB) Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014).
A Comparative Study of Modern Inference Techniques for Structured
Discrete Energy Minimization Problems.
CoRR.
http://arxiv.org/abs/1404.0533 Szeliski, R, Zabih, R, Scharstein, D, Veksler, O, Kolmogorov, V, Agarwala, A, Tappen, M and Rother, C (2008).
A comparative study of energy minimization methods for Markov random fields with smoothness-based priors.
IEEE Transactions on Pattern Analysis and Machine Intelligence. Springer-Verlag.
30 1068–1080.
http://vision.middlebury.edu/MRF. Szeliski, R, Zabih, R, Scharstein, D, Veksler, O, Kolmogorov, V, Agarwala, A, Tappen, M and Rother, C (2008).
A comparative study of energy minimization methods for Markov random fields with smoothness-based priors.
IEEE Transactions on Pattern Analysis and Machine Intelligence.
30 1068–1080
Baust, M, Weinmann, A, Wieczorek, M, Lasser, T, Storath, M and Navab, N (2016).
Combined Tensor Fitting and TV Regularization in Diffusion Tensor Imaging based on a Riemannian Manifold Approach.
IEEE Transactions on Medical Imaging.
35 1972–1989
Technical Report (8.65 MB) Pages