Publications

Export 1963 results:
[ Author(Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
K
Kappes, J H, Savchynskyy, B and Schnörr, C (2012). A Bundle Approach To Efficient MAP-Inference by Lagrangian Relaxation. CVPR. Proceedings. 1688-1695
Kappes, J H, Schmidt, S and Schnörr, C (2010). MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation. European Conference on Computer Vision (ECCV). Springer. 6313 735--747
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184. http://hci.iwr.uni-heidelberg.de/opengm2/
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184
Kappes, J Hendrik, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2016). Multicuts and Perturb & MAP for Probabilistic Graph Clustering. Journal of Mathematical Imaging and Vision. 56 221–237. http://arxiv.org/abs/1601.02088
Kappes, J Hendrik, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2015). Probabilistic correlation clustering and image partitioning using perturbed Multicuts. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 9087 231–242
Kappes, J H, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2016). Multicuts and Perturb & MAP for Probabilistic Graph Clustering. J. Math. Imag. Vision. 56 221–237
Kappes, J, Speth, M, Reinelt, G and Schnörr, C (2016). Higher-order Segmentation via Multicuts. Comp. Vision Image Understanding. 143 104–119
Kappes, J H, Petra, S, Schnörr, C and Zisler, M (2015). TomoGC: Binary Tomography by Constrained Graph Cuts. Proc. GCPR
Kappes, J, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2015). Probabilistic Correlation Clustering and Image Partitioning Using Perturbed Multicuts. Proc. SSVM. Springer
Kappes, J Hendrik, Beier, T and Schnörr, C (2014). MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves. International Workshop on Graphical Models in Computer Vision
Kappes, J H, Schmidt, S and Schnörr, C (2010). MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation. European Conference on Computer Vision (ECCV). Springer Berlin / Heidelberg. 6313 735–747
Kappes, J H and Schnörr, C (2008). MAP-Inference for Highly-Connected Graphs with DC-Programming. Pattern Recognition – 30th DAGM Symposium. Springer Verlag. 5096 1–10
Kappes, J Hendrik, Speth, M, Andres, B, Reinelt, G and Schnörr, C (2011). Globally Optimal Image Partitioning by Multicuts. EMMCVPR. Springer
Kappes, J Hendrik (2011). Inference on Highly-Connected Discrete Graphical Models with Applications to Visual Object Recognition. Ruprecht-Karls-Universität Heidelberg, Faculty of Mathematics and Computer Sciences, Heidelberg, Germany. http://www.ub.uni-heidelberg.de/archiv/11872/
Kappes, J H, Speth, M, Reinelt, G and Schnörr, C (2013). Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization. CVPR
Kappes, J Hendrik, Speth, M, Reinelt, G and Schnörr, C (2013). Higher-order Segmentation via Multicuts. ArXiv e-prints
Kannan, A, Winn, J and Rother, C (2007). Clustering appearance and shape by learning jigsaws. Advances in Neural Information Processing Systems. 657–664
Kannan, A, Winn, J and Rother, C (2007). Clustering appearance and shape by learning jigsaws. Advances in Neural Information Processing Systems. 657–664
Kandlbinder, T (1994). Gasaustauschmessungen Mit Sauerstoff. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ.\ Heidelberg
Kandemir, M, Agkül, A, Haußmann, M and Ünal, G (2021). Evidential Turing Processes. arXiv preprint. https://arxiv.org/abs/2106.01216
Kandemir, M and Hamprecht, F A (2015). The Deep Feed-Forward Gaussian Process: An Effective Generalization to Covariance Priors. NIPS. Proceedings. 44 145-159PDF icon Supplementary Material (223.39 KB)PDF icon Technical Report (2.58 MB)
Kandemir, M, Haußmann, M, Diego, F, Rajamani, K, van der Laak, J and Hamprecht, F A (2016). Variational weakly-supervised Gaussian processes. BMVC. ProceedingsPDF icon Technical Report (3.28 MB)
Kandemir, M, Hamprecht, F A, Wojek, C and Schmidt, U (2017). Active machine learning for training an event classification. Patent, Patent Number WO2017032775 A1
Kandemir, M, Hamprecht, F A, Wojek, C and Schmidt, U (2017). Maschinelles Lernen. Patent, Patent Number WO2017032775A1PDF icon Technical Report (317.04 KB)
Kandemir, M, Rubio, J C, Schmidt, U, Wojek, C, Welbl, J, Ommer, B and Hamprecht, F A (2014). Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures. Medical Image Computing and Computer-Assisted Intervention. Springer. 154--161PDF icon Technical Report (2 MB)
Kandemir, M (2015). Asymmetric transfer learning with deep Gaussian processes. ICML. Proceedings. 730-738PDF icon Technical Report (570.95 KB)
Kandemir, M, Feuchtinger, A, Walch, A and Hamprecht, F A (2014). Digital Pathology: Multiple instance learning can detect Barrett'scancer. ISBI. Proceedings. 1348-1351PDF icon Technical Report (2.86 MB)
Kandemir, M and Hamprecht, F A (2015). Cell event detection in phase-contrast microscopy sequences from few annotations. MICCAI. Proceedings. Springer. LNCS 9351 316-323PDF icon Technical Report (564.69 KB)
Kandemir, M and Hamprecht, F A (2014). Computer-aided diagnosis from weak supervision: A benchmarking study. Computerized Medical Imaging and Graphics. 42 44-50PDF icon Technical Report (4.28 MB)
Kandemir, M and Hamprecht, F A (2014). Instance Label Prediction by Dirichlet Process Multiple Instance Learning. UAI. ProceedingsPDF icon Technical Report (4.26 MB)
Kandemir, M, Klami, A, Gonen, M, Vetek, A and Kaski, S (2014). Multi-task and multi-view learning of user state. Neurocomputing. 139 97-106
Kandemir, M, Rubio, J C, Schmidt, U, Welbl, J, Ommer, B and Hamprecht, F A (2014). Event Detection by Feature Unpredictability in Phase-Contrast Videos of Cell Cultures. MICCAI. Proceedings. Springer. 154-161PDF icon Paper (2 MB)
Kandemir, M, Zhang, C and Hamprecht, F A (2014). Empowering multiple instance histopathology cancer diagnosis by cell graphs. MICCAI. Proceedings. Springer. 8674 228-235PDF icon Technical Report (1.76 MB)

Pages