The Mutex Watershed: Efficient, Parameter-Free Image Partitioning

TitleThe Mutex Watershed: Efficient, Parameter-Free Image Partitioning
Publication TypeConference Paper
Year of Publication2018
AuthorsWolf, S, Pape, C, Bailoni, A, Rahaman, N, Kreshuk, A, Köthe, U, Hamprecht, FA
Conference NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Date Publishedapr
ISBN Number9783030012243
Abstract

Image partitioning, or segmentation without semantics, is the task of decomposing an image into distinct segments; or equivalently, the task of detecting closed contours in an image. Most prior work either requires seeds, one per segment; or a threshold; or formulates the task as an NP-hard signed graph partitioning problem. Here, we propose an algorithm with empirically linearithmic complexity. Unlike seeded watershed, the algorithm can accommodate not only attractive but also repulsive cues, allowing it to find a previously unspecified number of segments without the need for explicit seeds or a tunable threshold. The algorithm itself, which we dub “Mutex Watershed”, is closely related to a minimal spanning tree computation. It is deterministic and easy to implement. When presented with short-range attractive and long-range repulsive cues from a deep neural network, the Mutex Watershed gives results that currently define the state-of-the-art in the competitive ISBI 2012 EM segmentation benchmark. These results are also better than those obtained from other recently proposed clustering strategies operating on the very same network outputs.

URLhttp://arxiv.org/abs/1904.12654
DOI10.1007/978-3-030-01225-0_34
Citation KeyWolf2018