Publications

Export 501 results:
Author Title Type [ Year(Desc)]
Filters: First Letter Of Last Name is B  [Clear All Filters]
2013
F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C., A Class of Quasi-Variational Inequalities for Adaptive Image Denoising and Decomposition, Computational Optimization and Applications (COAP), vol. 54 (2), pp. 371-398, 2013.
F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C., A class of quasi-variational inequalities for adaptive image denoising and decomposition, Computational Optimization and Applications, vol. 54, pp. 371-398, 2013.PDF icon Technical Report (748.66 KB)
D. Breitenreicher, Lellmann, J., and Schnörr, C., COAL: a generic modelling and prototyping framework for convex optimization problems of variational image analysis, Optimization Methods and Software, vol. 28, pp. 1081-1094, 2013.PDF icon Technical Report (1.69 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Sungwoong, K., Kausler, B. X., Lellmann, J., Komodakis, N., and Rother, C., A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems, in CVPR 2013. Proceedings, 2013.PDF icon Technical Report (1.35 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Lellmann, J., Komodakis, N., and Rother, C., A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problem, in CVPR, 2013.PDF icon Technical Report (1.35 MB)
F. Lenzen, Kim, K. I., Schäfer, H., Nair, R., Meister, S., Becker, F., and Garbe, C. S., Denoising Strategies for Time-of-Flight Data, in Time-of-Flight Imaging: Algorithms, Sensors and Applications, 2013, vol. 8200, pp. 24-25.
F. Lenzen, Kim, K. In, Schäfer, H., Nair, R., Meister, S., Becker, F., and Garbe, C. S., Denoising Strategies for Time-of-Flight Data, Time-of-Flight and Depth Imaging: Sensors, Algorithms, and Applications, vol. 8200. Springer, pp. 25-45, 2013.PDF icon Technical Report (961.62 KB)
P. Salomon Bauer, Development of an imaging polarimeter for water wave slope measurements, Institut für Umwelphysik, Univeristät Heidelberg, Germany, 2013.
A. Hosni, Rhemann, C., Bleyer, M., Rother, C., and Gelautz, M., Fast cost-volume filtering for visual correspondence and beyond, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, pp. 504–511, 2013.
A. Monroy, Bell, P., and Ommer, B., A Morphometric Approach to Reception Analysis of Premodern Art, in Scientific Computing & Cultural Heritage, 2013.PDF icon Technical Report (17.75 MB)
M. Becker, Baron, M., Kondermann, D., Bussler, M., and Helzle, V., Movie Dimensionalization Via Sparse User Annotations, in submitted to 3DTV-Con, 2013.
M. Becker, Baron, M., Kondermann, D., Bussler, M., and Helzle, V., Movie Dimensionalization Via Sparse User Annotations, in submitted to 3DTV-Con, 2013.
M. Becker, Baron, M., Kondermann, D., Bussler, M., and Helzle, V., Movie Dimensionalization Via Sparse User Annotations, in submitted to 3DTV-Con, 2013.
D. Kondermann and Becker, M., Movie Dimensionalization Via Sparse User Annotations, in submitted to ICCV, 2013.
P. Bell, Schlecht, J., and Ommer, B., Nonverbal Communication in Medieval Illustrations Revisited by Computer Vision and Art History, Visual Resources Journal, Special Issue on Digital Art History, vol. 29, p. 26--37, 2013.
D. Kiefhaber, Rocholz, R., Bauer, P. Salomon, and Jähne, B., Optical measurement of surface ocean waves, in 3rd EOS Topical Meeting on Blue Photonics --- Optics in the Sea, 2013.
K. Berger, Meister, S., Nair, R., and Kondermann, D., A State of the Art Report on Kinect Sensor Setups in Computer Vision, in Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications, 2013, vol. 8200, pp. 257-272.
F. Becker, Lenzen, F., Kappes, J. H., and Schnörr, C., Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences, International Journal of Computer Vision, vol. 105 (3), pp. 269-297, 2013.
F. Becker, Lenzen, F., Kappes, J. H., and Schnörr, C., Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences, International Journal of Computer Vision, vol. 105, no. 3, p. 269--297, 2013.PDF icon Technical Report (15.4 MB)
F. Becker, Lenzen, F., Kappes, J. H., and Schnörr, C., Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences, International Journal of Computer Vision, vol. 105, pp. 269–297, 2013.
2014
M. Takami, Bell, P., and Ommer, B., An Approach to Large Scale Interactive Retrieval of Cultural Heritage, in Eurographics Workshop on Graphics and Cultural Heritage, 2014.PDF icon Technical Report (7.94 MB)
T. Kröger, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Asymmetric Cuts: Joint Image Labeling and Partitioning, in Pattern Recognition - 36th German Conference, {GCPR} 2014, Münster, Germany, September 2-5, 2014, Proceedings, 2014.PDF icon Technical Report (3.46 MB)
T. Kröger, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Asymmetric Cuts: Joint Image Labeling and Partitioning, in 36th German Conference on Pattern Recognition, 2014.
A. Kreshuk, Köthe, U., Pax, E., Bock, D. D., and Hamprecht, F. A., Automated Detection of Synapses in Serial Section Transmission Electron Microscopy Image Stacks, PLoS ONE, vol. 9, p. 2, 2014.PDF icon Technical Report (16.66 MB)
L. Maier-Hein, Mersmann, S., Kondermann, D., Bodenstedt, S., Sanchez, A., Stock, C., Kenngott, H., Eisenmann, M., and Speidel, S., Can masses of non-experts train highly accurate image classifiers? A crowdsourcing approach to instrument segmentation in laparoscopic images, in MICCAI, 2014.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, CoRR, 2014.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C., A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems, CoRR, vol. abs/1404.0533, 2014.PDF icon Technical Report (3.32 MB)
L. Maier-Hein, Mersmann, S., Kondermann, D., Stock, C., Kenngott, H., Sanchez, A., Wagner, M., Preukschas, A., Wekerle, A. - L., Helfert, S., Bodenstedt, S., and Speidel, S., Crowdsourcing for reference correspondence generation in endoscopic images, in MICCAI, 2014.
T. Beier, Kröger, T., Kappes, J. H., Köthe, U., and Hamprecht, F. A., Cut, Glue and Cut: A Fast, Approximate Solver for Multicut Partitioning, in 2014 {IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2014, Columbus, OH, USA, June 23-28, 2014, 2014.PDF icon Technical Report (10.06 MB)
E. Eyjolfsdottir, Branson, S., Burgos-Artizzu, X. P., Hoopfer, E. D., Schor, J., Anderson, D. J., and Perona, P., Detection of social actions in fruit flies, Lecture Notes in Computer Science, vol. 8690, pp. 772–787, 2014.
E. Eyjolfsdottir, Branson, S., Burgos-Artizzu, X. P., Hoopfer, E. D., Schor, J., Anderson, D. J., and Perona, P., Detection of social actions in fruit flies, Lecture Notes in Computer Science, vol. 8690, pp. 772–787, 2014.
A. Denitiu, Petra, S., Schnörr, C., and Schnörr, C., An Entropic Perturbation Approach to TV-Minimization for Limited-Data Tomography, in Discrete Geometry for Computer Imagery (DGCI) 2014, 2014, p. 262--274.PDF icon Technical Report (894.83 KB)
A. Denitiu, Petra, S., Schnörr, C., and Schnörr, C., An Entropic Perturbation Approach to TV-Minimization for Limited-Data Tomography, in Discrete Geometry for Computer Imagery (DGCI) 2014, 2014, pp. 262–274.
T. Beier, Graph based image analysis, University of Heidelberg, 2014.
M. Hornáček, Besse, F., Kautz, J., Fitzgibbon, A., and Rother, C., Highly overparameterized optical flow using PatchMatch belief propagation, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, vol. 8691 LNCS, pp. 220–234.

Pages