Publications

Export 796 results:
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is K  [Clear All Filters]
2018
W. Erb, Weinmann, A., Ahlborg, M., Brandt, C., Bringout, G., Buzug, T. M., Frikel, J., Kaethner, C., Knopp, T., März, T., Möddel, M., Storath, M., and Weber, A., Mathematical Analysis of the 1D Model and Reconstruction Schemes for Magnetic Particle Imaging, Inverse Problems, vol. 34, no. 5, 2018.
W. Erb, Weinmann, A., Ahlborg, M., Brandt, C., Bringout, G., Buzug, T. M., Frikel, J., Kaethner, C., Knopp, T., März, T., Möddel, M., Storath, M., and Weber, A., Mathematical Analysis of the 1D Model and Reconstruction Schemes for Magnetic Particle Imaging, Inverse Problems, vol. 34, no. 5, 2018.
M. Kiechle, Storath, M., Weinmann, A., and Kleinsteuber, M., Model-based learning of local image features for unsupervised texture segmentation, IEEE Transactions on Image Processing, vol. 27, no. 4, pp. 1994-2007, 2018.
M. Kiechle, Storath, M., Weinmann, A., and Kleinsteuber, M., Model-based learning of local image features for unsupervised texture segmentation, IEEE Transactions on Image Processing, vol. 27, no. 4, pp. 1994-2007, 2018.
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, ECCV. Proceedings. Springer, pp. 571-587, 2018.
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, ECCV. Proceedings. Springer, pp. 571-587, 2018.
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11208 LNCS, pp. 571–587.
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11208 LNCS, pp. 571–587.
L. Kostrykin, Schnörr, C., and Rohr, K., Segmentation of Cell Nuclei Using Intensity-Based Model Fitting and Sequential Convex Programming, in Proc. ISBI, 2018.
D. Kawetzki, Semantic Segmentation of Urban Scenes Using Deep Learning, Heidelberg University, 2018.
A. Sanakoyeu, Kotovenko, D., Lang, S., and Ommer, B., A Style-Aware Content Loss for Real-time HD Style Transfer, in Proceedings of the European Conference on Computer Vision (ECCV) (Oral), 2018.
2017
M. Kandemir, Hamprecht, F. A., Wojek, C., and Schmidt, U., Active machine learning for training an event classification, Patent, Patent Number WO2017032775 A1, 2017.
J. Kunz, Active Thermography as a Tool for the Estimation of Air-Water Transfer Velocities, vol. Dissertation. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg, 2017.
O. Hosseini Jafari, Groth, O., Kirillov, A., Yang, M. Ying, and Rother, C., Analyzing modular CNN architectures for joint depth prediction and semantic segmentation, in Proceedings - IEEE International Conference on Robotics and Automation, 2017, pp. 4620–4627.
G. Krause, Correlation of Performance and Entropy in Active Learning with Convolutional Neural Networks, Heidelberg University, 2017.
D. Schlesinger, Jug, F., Myers, G., Rother, C., and Kainmueller, D., Crowd sourcing image segmentation with iaSTAPLE, in Proceedings - International Symposium on Biomedical Imaging, 2017, pp. 401–405.
E. Brachmann, Krull, A., Nowozin, S., Shotton, J., Michel, F., Gumhold, S., and Rother, C., DSAC - Differentiable RANSAC for camera localization, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 2492–2500.
M. Storath, Brandt, C., Hofmann, M., Knopp, T., Salamon, J., Weber, A., and Weinmann, A., Edge preserving and noise reducing reconstruction for magnetic particle imaging, IEEE Transactions on Medical Imaging, vol. 36, no. 1, pp. 74 - 85, 2017.PDF icon Technical Report (1.43 MB)
F. Michel, Kirillov, A., Brachmann, E., Krull, A., Gumhold, S., Savchynskyy, B., and Rother, C., Global hypothesis generation for 6D object pose estimation, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 115–124.
F. Michel, Kirillov, A., Brachmann, E., Krull, A., Gumhold, S., Savchynskyy, B., and Rother, C., Global hypothesis generation for 6D object pose estimation, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 115–124.
A. Kirillov, Levinkov, E., Andres, B., Savchynskyy, B., and Rother, C., InstanceCut: From edges to instances with MultiCut, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 7322–7331.
E. Levinkov, Uhrig, J., Tang, S., Omran, M., Insafutdinov, E., Kirillov, A., Rother, C., Brox, T., Schiele, B., and Andres, B., Joint graph decomposition & node labeling: Problem, algorithms, applications, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 1904–1912.
A. Kirillov, Schlesinger, D., Zheng, S., Savchynskyy, B., Torr, P. H. S., and Rother, C., Joint training of generic CNN-CRF models with stochastic optimization, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10112 LNCS, pp. 221–236.
S. Wolf, Schott, L., Köthe, U., and Hamprecht, F. A., Learned Watershed: End-to-End Learning of Seeded Segmentation, ICCV. pp. 2030-2038, 2017.PDF icon Technical Report (3.76 MB)
J. Kruse, Rother, C., and Schmidt, U., Learning to Push the Limits of Efficient FFT-Based Image Deconvolution, in Proceedings of the IEEE International Conference on Computer Vision, 2017, vol. 2017-Octob, pp. 4596–4604.
J. Kruse, Rother, C., Schmidt, U., and Dresden, T. U., Learning to Push the Limits of Efficient FFT-based Image Deconvolution - Supplemental Material, 2017.
M. Kandemir, Hamprecht, F. A., Wojek, C., and Schmidt, U., Maschinelles Lernen, Patent, Patent Number WO2017032775A1, 2017.PDF icon Technical Report (317.04 KB)
T. Beier, Pape, C., Rahaman, N., Prange, T., Berg, S., Bock, D., Cardona, A., Knott, G. W., Plaza, S. M., Scheffer, L. K., Köthe, U., Kreshuk, A., and Hamprecht, F. A., Multicut brings automated neurite segmentation closer to human performance, Nature Methods, vol. 14, no. 2, pp. 101-102, 2017.
T. Beier, Pape, C., Rahaman, N., Prange, T., Berg, S., Bock, D., Cardona, A., Knott, G. W., Plaza, S. M., Scheffer, L. K., Köthe, U., Kreshuk, A., and Hamprecht, F. A., Multicut brings automated neurite segmentation closer to human performance, Nature Methods, vol. 14, no. 2, pp. 101-102, 2017.
T. Beier, Pape, C., Rahaman, N., Prange, T., Berg, S., Bock, D., Cardona, A., Knott, G. W., Plaza, S. M., Scheffer, L. K., Köthe, U., Kreshuk, A., and Hamprecht, F. A., Multicut brings automated neurite segmentation closer to human performance, Nature Methods, vol. 14, no. 2, pp. 101-102, 2017.
N. Krasowki, Beier, T., Knott, G. W., Köthe, U., Hamprecht, F. A., and Kreshuk, A., Neuron Segmentation with High-Level Biological Priors, IEEE Transactions on Medical Imaging, vol. 37, no. 4, 2017.
N. Krasowki, Beier, T., Knott, G. W., Köthe, U., Hamprecht, F. A., and Kreshuk, A., Neuron Segmentation with High-Level Biological Priors, IEEE Transactions on Medical Imaging, vol. 37, no. 4, 2017.
N. Krasowki, Beier, T., Knott, G. W., Köthe, U., Hamprecht, F. A., and Kreshuk, A., Neuron Segmentation with High-Level Biological Priors, IEEE Transactions on Medical Imaging, vol. 37, no. 4, 2017.
N. Krasowki, Beier, T., Knott, G. W., Köthe, U., Hamprecht, F. A., and Kreshuk, A., Neuron Segmentation with High-Level Biological Priors, IEEE Transactions on Medical Imaging, vol. 37, no. 4, 2017.
V. Ulman, Maška, M., Magnusson, K. E. G., Ronneberger, O., Haubold, C., Harder, N., Matula, P., Matula, P., Svoboda, D., Radojevic, M., Smal, I., Rohr, K., Jaldén, J., Blau, H. M., Dzyubachyk, O., Lelieveldt, B., Xiao, P., Li, Y., Cho, S. - Y., Dufour, A., Olivo-Marin, J. C., Reyes-Aldasoro, C. C., Solis-Lemus, J. A., Bensch, R., Brox, T., Stegmaier, J., Mikut, R., Wolf, S., Hamprecht, F. A., Esteves, T., Quelhas, P., Demirel, Ö., Malström, L., Jug, F., Tomančák, P., Meijering, E., Muñoz-Barrutia, A., Kozubek, M., and Ortiz-de-Solorzano, C., An Objective Comparison of Cell Tracking Algorithms, Nature Methods, vol. 14, no. 12, pp. 1141-1152, 2017.PDF icon Technical Report (4.24 MB)

Pages