Publications

Export 221 results:
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is P  [Clear All Filters]
2020
A. Wolny, Cerrone, L., Vijayan, A., Tofanelli, R., Vilches-Barro, A., Louveaux, M., Wenzel, C., Strauss, S., Wilson-Sanchez, D., Lymbouridou, R., Steigleder, S. S., Pape, C., Bailoni, A., Duran-Nebreda, S., Bassel, G. W., Lohmann, J. U., Tsiantis, M., Hamprecht, F. A., Schneitz, K., Maizel, A., and Kreshuk, A., Accurate and Versatile 3D Segmentation of Plant Tissues at Cellular Resolution, eLife, vol. 9, 2020.
S. Bollweg, Haußmann, M., Kasieczka, G., Luchmann, M., Plehn, T., and Thompson, J., Deep-Learning Jets with Uncertainties and More, SciPost Phys, vol. 8, no. 1, 2020.PDF icon Technical Report (1.65 MB)
A. Zeilmann, Savarino, F., Petra, S., and Schnörr, C., Geometric Numerical Integration of the Assignment Flow, Inverse Problems, vol. 36, p. 034004 (33pp), 2020.
S. Wolf, Bailoni, A., Pape, C., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph Partitioning, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, pp. 3724-3738, 2020.PDF icon Technical Report (2.58 MB)
S. Haller, Prakash, M., Hutschenreiter, L., Pietzsch, T., Rother, C., Jug, F., Swoboda, P., and Savchynskyy, B., A Primal-Dual Solver for Large-Scale Tracking-by-Assignment, AISTATS 2020. 2020.PDF icon PDF (1.04 MB)
S. Haller, Prakash, M., Hutschenreiter, L., Pietzsch, T., Rother, C., Jug, F., Swoboda, P., and Savchynskyy, B., A Primal-Dual Solver for Large-Scale Tracking-by-Assignment, AISTATS 2020. 2020.PDF icon PDF (1.04 MB)
A. Bailoni, Pape, C., Wolf, S., Kreshuk, A., and Hamprecht, F. A., Proposal-Free Volumetric Instance Segmentation from Latent Single-Instance Masks, GCPR, vol. 12544. Springer, pp. 331-344, 2020.
S. Wolf, Li, Y., Pape, C., Bailoni, A., Kreshuk, A., and Hamprecht, F. A., The Semantic Mutex Watershed for Efficient Bottom-Up Semantic Instance Segmentation, ECCV. Proceedings. pp. 208-224, 2020.
Y. Censor, Petra, S., and Schnörr, C., Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least Squares Case, J. Appl. Numer. Optimization (in press; arXiv:1911.05498), vol. 2, pp. 15-62, 2020.
A. Zern, Zisler, M., Petra, S., and Schnörr, C., Unsupervised Assignment Flow: Label Learning on Feature Manifolds by Spatially Regularized Geometric Assignment, Journal of Mathematical Imaging and Vision, 2020.
2019
A. L. Bendinger, Debus, C., Glowa, C., Karger, C. P., Peter, J., and Storath, M., Bolus arrival time estimation in dynamic contrast-enhanced magnetic resonance imaging of small animals based on spline models, in press, Physics in Medicine and Biology, vol. 64, no. 4, 2019.
J. Kleesiek, Morshuis, J. Nikolas, Isensee, F., Deike-Hofmann, K., Paech, D., Kickingereder, P., Köthe, U., Rother, C., Forsting, M., Wick, W., Bendszus, M., Schlemmer, H. Peter, and Radbruch, A., Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study, Investigative Radiology, vol. 54, pp. 653–660, 2019.
M. Papst, Development of a method for quantitative imaging of air-water gas exchange, Institut für Umweltphysik, Universität Heidelberg, Germany, 2019.
A. Zeilmann, Savarino, F., Petra, S., and Schnörr, C., Geometric Numerical Integration of the Assignment Flow, Inverse Problems, 2019.
O. Hosseini Jafari, Mustikovela, S. Karthik, Pertsch, K., Brachmann, E., and Rother, C., iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, vol. 11363 LNCS, pp. 477–492.
R. Hühnerbein, Savarino, F., Petra, S., and Schnörr, C., Learning Adaptive Regularization for Image Labeling Using Geometric Assignment, in Proc. SSVM, 2019.
R. Hühnerbein, Savarino, F., Petra, S., and Schnörr, C., Learning Adaptive Regularization for Image Labeling Using Geometric Assignment, preprint: arXiv, 2019.
S. Peter, Machine learning under test-time budget constraints. Heidelberg University, 2019.
Y. Bengio, Deleu, T., Rahaman, N., Ke, R., Lachapelle, S., Bilaniuk, O., Goyal, A., and Pal, C., A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms, arXiv preprint arXiv:1901.10912, 2019.PDF icon Technical Report (871.59 KB)
M. Zisler, Zern, A., Petra, S., and Schnörr, C., Self-Assignment Flows for Unsupervised Data Labeling on Graphs, preprint: arXiv, 2019.
Y. Censor, Petra, S., and Schnörr, C., Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least Squares Case, preprint: arXiv, 2019.
A. Zern, Zisler, M., Petra, S., and Schnörr, C., Unsupervised Assignment Flow: Label Learning on Feature Manifolds by Spatially Regularized Geometric Assignment, preprint: arXiv, 2019.
M. Zisler, Zern, A., Petra, S., and Schnörr, C., Unsupervised Labeling by Geometric and Spatially Regularized Self-Assignment, in Proc. SSVM, 2019.
N. Pandey, Weakly Supervised Semantic Segmentation, Heidelberg University, 2019.
2018
A. Zeilmann, Savarino, F., Petra, S., and Schnörr, C., Geometric Numerical Integration of the Assignment Flow, preprint: arXiv, 2018.
O. Hosseini Jafari, Mustikovela, S. K., Pertsch, K., Brachmann, E., and Rother, C., iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects, ACCV. Proceedings, in press. 2018.PDF icon Technical Report (3.28 MB)
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11208 LNCS, pp. 571–587.
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, ECCV. Proceedings. Springer, pp. 571-587, 2018.
A. Zern, Zisler, M., Aström, F., Petra, S., and Schnörr, C., Unsupervised Label Learning on Manifolds by Spatially Regularized Geometric Assignment, GCPR. Proceedings. pp. 698-713, 2018.PDF icon Technical Report (5.23 MB)
A. Zern, Zisler, M., Aström, F., Petra, S., and Schnörr, C., Unsupervised Label Learning on Manifolds by Spatially Regularized Geometric Assignment, in GCPR, 2018.

Pages