Publications

Export 494 results:
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is R  [Clear All Filters]
2018
H. Abu Alhaija, Mustikovela, S. K., Geiger, A., and Rother, C., Geometric Image Synthesis, ACCV. Proceedings, in press. 2018.PDF icon Technical Report (1.83 MB)
O. Hosseini Jafari, Mustikovela, S. K., Pertsch, K., Brachmann, E., and Rother, C., iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects, ACCV. Proceedings, in press. 2018.PDF icon Technical Report (3.28 MB)
E. Brachmann and Rother, C., Learning Less is More - 6D Camera Localization via 3D Surface Regression, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2018, pp. 4654–4662.
S. Tourani, Shekhovtsov, A., Rother, C., and Savchynskyy, B., MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical Models, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11208 LNCS, pp. 264–281.
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11208 LNCS, pp. 571–587.
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, ECCV. Proceedings. Springer, pp. 571-587, 2018.
L. Kostrykin, Schnörr, C., and Rohr, K., Segmentation of Cell Nuclei Using Intensity-Based Model Fitting and Sequential Convex Programming, in Proc. ISBI, 2018.
N. Rahaman, Arpit, D., Baratin, A., Draxler, F., Lin, M., Hamprecht, F. A., Bengio, Y., and Courville, A., On the spectral bias of deep neural networks, arXiv preprint arXiv:1806.08734, 2018.
H. Schilling, Diebold, M., Rother, C., and Jähne, B., Trust your Model: Light Field Depth Estimation with inline Occlusion Handling, CVPR. Proceedings. 2018.PDF icon Technical Report (5.46 MB)
H. Schilling, Diebold, M., Rother, C., and Jähne, B., Trust your Model: Light Field Depth Estimation with Inline Occlusion Handling, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2018, pp. 4530–4538.
N. Roth, Visualization of Near-Surface Flow Patterns for Air-Water Gas Transfer, Institut für Umweltphysik, Universität Heidelberg, Germany, 2018.
2017
O. Hosseini Jafari, Groth, O., Kirillov, A., Yang, M. Ying, and Rother, C., Analyzing modular CNN architectures for joint depth prediction and semantic segmentation, in Proceedings - IEEE International Conference on Robotics and Automation, 2017, pp. 4620–4627.
H. Abu Alhaija, Mustikovela, S. Karthik, Mescheder, L., Geiger, A., and Rother, C., Augmented reality meets deep learning for car instance segmentation in urban scenes, in British Machine Vision Conference 2017, BMVC 2017, 2017.
A. Behl, Hosseini Jafari, O., Mustikovela, S. Karthik, Abu Alhaija, H., Rother, C., and Geiger, A., Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?, in Proceedings of the IEEE International Conference on Computer Vision, 2017, vol. 2017-Octob, pp. 2593–2602.
A. Behl, Hosseini Jafari, O., Mustikovela, S. Karthik, Abu Alhaija, H., Rother, C., and Geiger, A., Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?, in Proceedings of the IEEE International Conference on Computer Vision, 2017, vol. 2017-Octob, pp. 2593–2602.
D. Schlesinger, Jug, F., Myers, G., Rother, C., and Kainmueller, D., Crowd sourcing image segmentation with iaSTAPLE, in Proceedings - International Symposium on Biomedical Imaging, 2017, pp. 401–405.
S. Ramos, Gehrig, S., Pinggera, P., Franke, U., and Rother, C., Detecting unexpected obstacles for self-driving cars: Fusing deep learning and geometric modeling, in IEEE Intelligent Vehicles Symposium, Proceedings, 2017, pp. 1025–1032.
S. Ramos, Gehrig, S., Pinggera, P., Franke, U., and Rother, C., Detecting unexpected obstacles for self-driving cars: Fusing deep learning and geometric modeling, in IEEE Intelligent Vehicles Symposium, Proceedings, 2017, pp. 1025–1032.
E. Brachmann, Krull, A., Nowozin, S., Shotton, J., Michel, F., Gumhold, S., and Rother, C., DSAC - Differentiable RANSAC for camera localization, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 2492–2500.
M. Storath, Rickert, D., Unser, M., and Weinmann, A., Fast segmentation from blurred data in 3D fluorescence microscopy, IEEE Transactions on Image Processing, vol. 26, no. 10, 2017.
A. Zern, Rohr, K., and Schnörr, C., Geometric Image Labeling with Global Convex Labeling Constraints, in Proc. EMMCVPR, 2017.
F. Michel, Kirillov, A., Brachmann, E., Krull, A., Gumhold, S., Savchynskyy, B., and Rother, C., Global hypothesis generation for 6D object pose estimation, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 115–124.
A. Kirillov, Levinkov, E., Andres, B., Savchynskyy, B., and Rother, C., InstanceCut: From edges to instances with MultiCut, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 7322–7331.
E. Levinkov, Uhrig, J., Tang, S., Omran, M., Insafutdinov, E., Kirillov, A., Rother, C., Brox, T., Schiele, B., and Andres, B., Joint graph decomposition & node labeling: Problem, algorithms, applications, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 1904–1912.
A. Kirillov, Schlesinger, D., Zheng, S., Savchynskyy, B., Torr, P. H. S., and Rother, C., Joint training of generic CNN-CRF models with stochastic optimization, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10112 LNCS, pp. 221–236.
J. Kruse, Rother, C., Schmidt, U., and Dresden, T. U., Learning to Push the Limits of Efficient FFT-based Image Deconvolution - Supplemental Material, 2017.
J. Kruse, Rother, C., and Schmidt, U., Learning to Push the Limits of Efficient FFT-Based Image Deconvolution, in Proceedings of the IEEE International Conference on Computer Vision, 2017, vol. 2017-Octob, pp. 4596–4604.
F. Rathke, Desana, M., and Schnörr, C., Locally Adaptive Probabilistic Models for Global Segmentation of Pathological OCT Scans, MICCAI. Proceedings. pp. 177-184, 2017.PDF icon Technical Report (4.79 MB)
F. Rathke, Desana, M., and Schnörr, C., Locally Adaptive Probabilistic Models for Global Segmentation of Pathological OCT Scans, in Proc. MICCAI, 2017.
F. Aström, Hühnerbein, R., Savarino, F., Recknagel, J., and Schnörr, C., MAP Image Labeling Using Wasserstein Messages and Geometric Assignment, in Proc. SSVM, 2017, vol. 10302.
T. Beier, Pape, C., Rahaman, N., Prange, T., Berg, S., Bock, D., Cardona, A., Knott, G. W., Plaza, S. M., Scheffer, L. K., Köthe, U., Kreshuk, A., and Hamprecht, F. A., Multicut brings automated neurite segmentation closer to human performance, Nature Methods, vol. 14, no. 2, pp. 101-102, 2017.
F. Savarino, Hühnerbein, R., Aström, F., Recknagel, J., and Schnörr, C., Numerical Integration of Riemannian Gradient Flows for Image Labeling, in Proc. SSVM, 2017, vol. 10302.
V. Ulman, Maška, M., Magnusson, K. E. G., Ronneberger, O., Haubold, C., Harder, N., Matula, P., Matula, P., Svoboda, D., Radojevic, M., Smal, I., Rohr, K., Jaldén, J., Blau, H. M., Dzyubachyk, O., Lelieveldt, B., Xiao, P., Li, Y., Cho, S. - Y., Dufour, A., Olivo-Marin, J. C., Reyes-Aldasoro, C. C., Solis-Lemus, J. A., Bensch, R., Brox, T., Stegmaier, J., Mikut, R., Wolf, S., Hamprecht, F. A., Esteves, T., Quelhas, P., Demirel, Ö., Malström, L., Jug, F., Tomančák, P., Meijering, E., Muñoz-Barrutia, A., Kozubek, M., and Ortiz-de-Solorzano, C., An Objective Comparison of Cell Tracking Algorithms, Nature Methods, vol. 14, no. 12, pp. 1141-1152, 2017.PDF icon Technical Report (4.24 MB)
V. Ulman, Maška, M., Magnusson, K. E. G., Ronneberger, O., Haubold, C., Harder, N., Matula, P., Matula, P., Svoboda, D., Radojevic, M., Smal, I., Rohr, K., Jaldén, J., Blau, H. M., Dzyubachyk, O., Lelieveldt, B., Xiao, P., Li, Y., Cho, S. - Y., Dufour, A., Olivo-Marin, J. C., Reyes-Aldasoro, C. C., Solis-Lemus, J. A., Bensch, R., Brox, T., Stegmaier, J., Mikut, R., Wolf, S., Hamprecht, F. A., Esteves, T., Quelhas, P., Demirel, Ö., Malström, L., Jug, F., Tomančák, P., Meijering, E., Muñoz-Barrutia, A., Kozubek, M., and Ortiz-de-Solorzano, C., An Objective Comparison of Cell Tracking Algorithms, Nature Methods, vol. 14, no. 12, pp. 1141-1152, 2017.PDF icon Technical Report (4.24 MB)
V. Ulman, Maška, M., Magnusson, K. E. G., Ronneberger, O., Haubold, C., Harder, N., Matula, P., Matula, P., Svoboda, D., Radojevic, M., Smal, I., Rohr, K., Jaldén, J., Blau, H. M., Dzyubachyk, O., Lelieveldt, B., Xiao, P., Li, Y., Cho, S. - Y., Dufour, A., Olivo-Marin, J. C., Reyes-Aldasoro, C. C., Solis-Lemus, J. A., Bensch, R., Brox, T., Stegmaier, J., Mikut, R., Wolf, S., Hamprecht, F. A., Esteves, T., Quelhas, P., Demirel, Ö., Malström, L., Jug, F., Tomančák, P., Meijering, E., Muñoz-Barrutia, A., Kozubek, M., and Ortiz-de-Solorzano, C., An Objective Comparison of Cell Tracking Algorithms, Nature Methods, vol. 14, no. 12, pp. 1141-1152, 2017.PDF icon Technical Report (4.24 MB)

Pages