Publications

Export 1229 results:
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is S  [Clear All Filters]
2019
K. E. Krall, Smith, A. W., Takagaki, N., and Jähne, B., Air–sea gas exchange at wind speeds up to 85 m/s, Ocean Science, vol. 15, p. 1783-–1799, 2019.
C. Schnörr, Assignment Flows, Variational Methods for Nonlinear Geometric Data and Applications. Springer, 2019.
A. L. Bendinger, Debus, C., Glowa, C., Karger, C. P., Peter, J., and Storath, M., Bolus arrival time estimation in dynamic contrast-enhanced magnetic resonance imaging of small animals based on spline models, in press, Physics in Medicine and Biology, vol. 64, no. 4, 2019.
J. Kleesiek, Morshuis, J. Nikolas, Isensee, F., Deike-Hofmann, K., Paech, D., Kickingereder, P., Köthe, U., Rother, C., Forsting, M., Wick, W., Bendszus, M., Schlemmer, H. Peter, and Radbruch, A., Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study, Investigative Radiology, vol. 54, pp. 653–660, 2019.
D. Kotovenko, Sanakoyeu, A., Lang, S., and Ommer, B., Content and Style Disentanglement for Artistic Style Transfer, in Proceedings of the Intl. Conf. on Computer Vision (ICCV), 2019.
F. Savarino and Schnörr, C., Continuous-Domain Assignment Flows, preprint: arXiv, 2019.
F. Savarino and Schnörr, C., Continuous-Domain Assignment Flows, preprint: arXiv, 2019.
B. Savchynskyy, Discrete Graphical Models — An Optimization Perspective, Foundations and Trends® in Computer Graphics and Vision, vol. 11, pp. 160–429, 2019.
A. Sanakoyeu, Tschernezki, V., Büchler, U., and Ommer, B., Divide and Conquer the Embedding Space for Metric Learning, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2019.
L. Kiefer, Storath, M., and Weinmann, A., An efficient algorithm for the piecewise affine-linear Mumford-Shah model based on a Taylor jet splitting, IEEE Transactions on Image Processing, vol. 29, 2019.PDF icon Technical Report (2.04 MB)
A. Imle, Kumberger, P., Schnellbächer, N. D., Fehr, J., Carillo-Bustamente, P., Ales, J., Schmidt, P., Ritter, C., Godinez, W. J., Müller, B., Rohr, K., Hamprecht, F. A., Schwarz, U. S., Graw, F., and Fackler, O. T., Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures, Nature Communications, vol. 13;10(1), 2019.
A. Imle, Kumberger, P., Schnellbächer, N. D., Fehr, J., Carillo-Bustamente, P., Ales, J., Schmidt, P., Ritter, C., Godinez, W. J., Müller, B., Rohr, K., Hamprecht, F. A., Schwarz, U. S., Graw, F., and Fackler, O. T., Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures, Nature Communications, vol. 13;10(1), 2019.
A. Imle, Kumberger, P., Schnellbächer, N. D., Fehr, J., Carillo-Bustamente, P., Ales, J., Schmidt, P., Ritter, C., Godinez, W. J., Müller, B., Rohr, K., Hamprecht, F. A., Schwarz, U. S., Graw, F., and Fackler, O. T., Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures, Nature Communications, vol. 13;10(1), 2019.
F. Rathke and Schnörr, C., Fast Multivariate Log-Concave Density Estimation, Comp. Statistics & Data Analysis, vol. 140, pp. 41–58, 2019.
F. Rathke and Schnörr, C., Fast Multivariate Log-Concave Density Estimation, Comp. Statistics & Data Analysis, vol. 140, pp. 41-58, 2019.
A. Zeilmann, Savarino, F., Petra, S., and Schnörr, C., Geometric Numerical Integration of the Assignment Flow, Inverse Problems, 2019.
A. Zeilmann, Savarino, F., Petra, S., and Schnörr, C., Geometric Numerical Integration of the Assignment Flow, Inverse Problems, 2019.
L. Kostrykin, Schnörr, C., and Rohr, K., Globally Optimal Segmentation of Cell Nuclei in Fluoroscence Microscopy Images using Shape and Intensity Information, Medical Image Analysis, 2019.
S. Berg, Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., Schiegg, M., Ales, J., Beier, T., Rudy, M., Eren, K., Cervantes, J. I., Xu, B., Beuttenmüller, F., Wolny, A., Zhang, C., Köthe, U., Hamprecht, F. A., and Kreshuk, A., ilastik: interactive machine learning for (bio)image analysis, Nature Methods, vol. 16, pp. 1226-1232, 2019.
S. Berg, Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., Schiegg, M., Ales, J., Beier, T., Rudy, M., Eren, K., Cervantes, J. I., Xu, B., Beuttenmüller, F., Wolny, A., Zhang, C., Köthe, U., Hamprecht, F. A., and Kreshuk, A., ilastik: interactive machine learning for (bio)image analysis, Nature Methods, vol. 16, pp. 1226-1232, 2019.
R. Hühnerbein, Savarino, F., Petra, S., and Schnörr, C., Learning Adaptive Regularization for Image Labeling Using Geometric Assignment, preprint: arXiv, 2019.
R. Hühnerbein, Savarino, F., Petra, S., and Schnörr, C., Learning Adaptive Regularization for Image Labeling Using Geometric Assignment, preprint: arXiv, 2019.
R. Hühnerbein, Savarino, F., Petra, S., and Schnörr, C., Learning Adaptive Regularization for Image Labeling Using Geometric Assignment, in Proc. SSVM, 2019.
R. Hühnerbein, Savarino, F., Petra, S., and Schnörr, C., Learning Adaptive Regularization for Image Labeling Using Geometric Assignment, in Proc. SSVM, 2019.
T. Leistner, Schilling, H., Mackowiak, R., Gumhold, S., and Rother, C., Learning to Think Outside the Box: Wide-Baseline Light Field Depth Estimation with EPI-Shift, in Proceedings - 2019 International Conference on 3D Vision, 3DV 2019, 2019, pp. 249–257.PDF icon PDF (8.94 MB)
E. Kirschbaum, Haußmann, M., Wolf, S., Sonntag, H., Schneider, J., Elzoheiry, S., Kann, O., Durstewitz, D., and Hamprecht, F. A., LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging videos, ICLR. Proceedings. 2019.
E. Kirschbaum, Haußmann, M., Wolf, S., Sonntag, H., Schneider, J., Elzoheiry, S., Kann, O., Durstewitz, D., and Hamprecht, F. A., LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging videos, ICLR. Proceedings. 2019.
R. Snajder, Pipeline für die automatisierte Objektsegmentierung von 3D Lightshet Mikroskopiebildern, Heidelberg University, 2019.
F. E Sanmartin, Damrich, S., and Hamprecht, F. A., Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning, in Advances in Neural Information Processing Systems, 2019.
M. Zisler, Zern, A., Petra, S., and Schnörr, C., Self-Assignment Flows for Unsupervised Data Labeling on Graphs, preprint: arXiv, 2019.
M. Storath, Kiefer, L., and Weinmann, A., Smoothing for signals with discontinuities using higher order Mumford-Shah models, Numerische Mathematik, vol. 143(2), pp. 423-460, 2019.PDF icon Technical Report (1.09 MB)
M. Desana and Schnörr, C., Sum-Product Graphical Models, Machine Learning, 2019.
Y. Censor, Petra, S., and Schnörr, C., Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least Squares Case, preprint: arXiv, 2019.
M. Esposito, Hennersperger, C., Göbl, R., Demaret, L., Storath, M., Navab, N., Baust, M., and Weinmann, A., Total variation regularization of pose signals with an application to 3D freehand ultrasound, IEEE Transactions on Medical Imaging, vol. 38(10), pp. 2245-2258, 2019.

Pages