Publications

Export 311 results:
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is W  [Clear All Filters]
2018
D. Fortun, Storath, M., Rickert, D., Weinmann, A., and Unser, M., Fast Piecewise-Affine Motion Estimation Without Segmentation, IEEE Transactions on Image Processing, vol. 27 , no. 11, pp. 5612 - 5624, 2018.
M. Weiler, Hamprecht, F. A., and Storath, M., Learning Steerable Filters for Rotation Equivariant CNNs, CVPR. Proceedings. pp. 849-858, 2018.PDF icon Technical Report (1.35 MB)
W. Erb, Weinmann, A., Ahlborg, M., Brandt, C., Bringout, G., Buzug, T. M., Frikel, J., Kaethner, C., Knopp, T., März, T., Möddel, M., Storath, M., and Weber, A., Mathematical Analysis of the 1D Model and Reconstruction Schemes for Magnetic Particle Imaging, Inverse Problems, vol. 34, no. 5, 2018.
W. Erb, Weinmann, A., Ahlborg, M., Brandt, C., Bringout, G., Buzug, T. M., Frikel, J., Kaethner, C., Knopp, T., März, T., Möddel, M., Storath, M., and Weber, A., Mathematical Analysis of the 1D Model and Reconstruction Schemes for Magnetic Particle Imaging, Inverse Problems, vol. 34, no. 5, 2018.
M. Kiechle, Storath, M., Weinmann, A., and Kleinsteuber, M., Model-based learning of local image features for unsupervised texture segmentation, IEEE Transactions on Image Processing, vol. 27, no. 4, pp. 1994-2007, 2018.
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11208 LNCS, pp. 571–587.
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, ECCV. Proceedings. Springer, pp. 571-587, 2018.
K. Bredies, Holler, M., Storath, M., and Weinmann, A., Total Generalized Variation for Manifold-valued Data, SIAM Journal on Imaging Sciences, vol. 11, no. 3, pp. 1785 - 1848, 2018.
2017
M. Kandemir, Hamprecht, F. A., Wojek, C., and Schmidt, U., Active machine learning for training an event classification, Patent, Patent Number WO2017032775 A1, 2017.
M. Storath, Brandt, C., Hofmann, M., Knopp, T., Salamon, J., Weber, A., and Weinmann, A., Edge preserving and noise reducing reconstruction for magnetic particle imaging, IEEE Transactions on Medical Imaging, vol. 36, no. 1, pp. 74 - 85, 2017.PDF icon Technical Report (1.43 MB)
M. Storath, Brandt, C., Hofmann, M., Knopp, T., Salamon, J., Weber, A., and Weinmann, A., Edge preserving and noise reducing reconstruction for magnetic particle imaging, IEEE Transactions on Medical Imaging, vol. 36, no. 1, pp. 74 - 85, 2017.PDF icon Technical Report (1.43 MB)
M. Storath, Rickert, D., Unser, M., and Weinmann, A., Fast segmentation from blurred data in 3D fluorescence microscopy, IEEE Transactions on Image Processing, vol. 26, no. 10, 2017.
M. Storath, Weinmann, A., and Unser, M., Jump-penalized least absolute values estimation of scalar or circle-valued signals, Information and Inference, vol. 6, no. 3, pp. 225–245, 2017.PDF icon Technical Report (3.4 MB)
S. Wolf, Schott, L., Köthe, U., and Hamprecht, F. A., Learned Watershed: End-to-End Learning of Seeded Segmentation, ICCV. pp. 2030-2038, 2017.PDF icon Technical Report (3.76 MB)
M. Weiler, Learning Steerable Filters for Rotation Equivariant Convolutional Neural Networks, Heidelberg University, 2017.
B. Brattoli, Büchler, U., Wahl, A. - S., Schwab, M. E., and Ommer, B., LSTM Self-Supervision for Detailed Behavior Analysis, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.PDF icon Article (8.75 MB)
M. Kandemir, Hamprecht, F. A., Wojek, C., and Schmidt, U., Maschinelles Lernen, Patent, Patent Number WO2017032775A1, 2017.PDF icon Technical Report (317.04 KB)
V. Ulman, Maška, M., Magnusson, K. E. G., Ronneberger, O., Haubold, C., Harder, N., Matula, P., Matula, P., Svoboda, D., Radojevic, M., Smal, I., Rohr, K., Jaldén, J., Blau, H. M., Dzyubachyk, O., Lelieveldt, B., Xiao, P., Li, Y., Cho, S. - Y., Dufour, A., Olivo-Marin, J. C., Reyes-Aldasoro, C. C., Solis-Lemus, J. A., Bensch, R., Brox, T., Stegmaier, J., Mikut, R., Wolf, S., Hamprecht, F. A., Esteves, T., Quelhas, P., Demirel, Ö., Malström, L., Jug, F., Tomančák, P., Meijering, E., Muñoz-Barrutia, A., Kozubek, M., and Ortiz-de-Solorzano, C., An Objective Comparison of Cell Tracking Algorithms, Nature Methods, vol. 14, no. 12, pp. 1141-1152, 2017.PDF icon Technical Report (4.24 MB)
A. - S. Wahl, Büchler, U., Brändli, A., Brattoli, B., Musall, S., Kasper, H., Ineichen, B. V., Helmchen, F., Ommer, B., and Schwab, M. E., Optogenetically stimulating the intact corticospinal tract post-stroke restores motor control through regionalized functional circuit formation, Nature Communications, p. (ASW & UB contributed equally; BO and MES contributed equally), 2017.
2016
S. Wolf, Cell Tracking With Graphical Model Using Higher Order Features On Track Segments, University of Heidelberg, 2016.
M. Baust, Weinmann, A., Wieczorek, M., Lasser, T., Storath, M., and Navab, N., Combined Tensor Fitting and TV Regularization in Diffusion Tensor Imaging based on a Riemannian Manifold Approach, IEEE Transactions on Medical Imaging, vol. 35, no. 8, pp. 1972–1989, 2016.PDF icon Technical Report (8.65 MB)
M. Baust, Weinmann, A., Wieczorek, M., Lasser, T., Storath, M., and Navab, N., Combined Tensor Fitting and TV Regularization in Diffusion Tensor Imaging based on a Riemannian Manifold Approach, IEEE Transactions on Medical Imaging, vol. 35, no. 8, pp. 1972–1989, 2016.PDF icon Technical Report (8.65 MB)
C. Haubold, Ales, J., Wolf, S., and Hamprecht, F. A., A Generalized Successive Shortest Paths Solver for Tracking Dividing Targets, ECCV. Proceedings, vol. LNCS 9911. Springer, pp. 566-582, 2016.PDF icon Technical Report (1.18 MB)
A. Biller, Badde, S., Nagel, A., Neumann, J. O., Wick, W., Hertenstein, A., Bendszus, M., Sahm, F., Benkhedah, N., and Kleesiek, J., Improved Brain Tumor Classification by Sodium MR Imaging: Prediction of IDH Mutation Status and Tumor Progression, American Journal of Neuroradiology, vol. 37 , pp. 66-73, 2016.
A. Stefanoiu, Weinmann, A., Storath, M., Navab, N., and Baust, M., Joint Segmentation and Shape Regularization with a Generalized Forward Backward Algorithm, IEEE Transactions on Image Processing, vol. 25, no. 7, pp. 3384 - 3394, 2016.PDF icon Technical Report (3.55 MB)
J. Kleesiek, Petersen, J., Döring, M., Maier-Hein, K., Köthe, U., Wick, W., Hamprecht, F. A., Bendszus, M., and Biller, A., Virtual Raters for Reproducible and Objective Assessments in Radiology, Nature Scientific Reports, vol. 6, 2016.PDF icon Technical Report (2.81 MB)
2015
A. Biesdorf, Wörz, S., von Tengg-Kobligk, H., Rohr, K., and Schnörr, C., 3D Segmentation of Vessels by Incremental Implicit Polynomial Fitting and Convex Optimization, in Proc.~ISBI, 2015.PDF icon Technical Report (611.33 KB)
A. Kreshuk, Walecki, R., Köthe, U., Gierthmühlen, M., Plachta, D., Genoud, C., Haastert-Talini, K., and Hamprecht, F. A., Automated Tracing of Myelinated Axons and Detection of the Nodes of Ranvier in Serial Images of Peripheral Nerves, Journal of Microscopy, vol. 259 (2), pp. 143-154, 2015.
M. Diebold, Blum, O., Gutsche, M., Wanner, S., Garbe, C., Baker, H., and Jähne, B., Light-field camera design for high-accuracy depth estimation, in Videometrics, Range Imaging, and Applications XIII, 2015.
M. Diebold, Blum, O., Gutsche, M., Wanner, S., Garbe, C. S., Baker, H., and Jähne, B., Light-field camera design for high-accuracy depth estimation, Videometrics, Range Imaging, and Applications XIII. 2015.
E. Mesarchaki, Kräuter, C., Krall, K. Ellen, Bopp, M., Helleis, F., Williams, J., and Jähne, B., Measuring air–sea gas-exchange velocities in a large-scale annular wind–wave tank, Ocean Sci., vol. 11, p. 121--138, 2015.
M. Schiegg, Heuer, B., Haubold, C., Wolf, S., Köthe, U., and Hamprecht, F. A., Proof-reading Guidance in Cell Tracking by Sampling from Tracking-by-assignment Models, in ISBI. Proceedings, 2015, pp. 394-398.PDF icon Technical Report (648.55 KB)
B. Antic, Büchler, U., Wahl, A. - S., Schwab, M. E., and Ommer, B., Spatiotemporal Parsing of Motor Kinematics for Assessing Stroke Recovery, in Medical Image Computing and Computer-Assisted Intervention, 2015.PDF icon Article (2.24 MB)

Pages