Publications

Export 1965 results:
Author Title [ Type(Desc)] Year
Journal Article
Arnab, A, Zheng, S, Jayasumana, S, Romera-paredes, B, Kirillov, A, Savchynskyy, B, Rother, C, Kahl, F and Torr, P (2018). Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation. Cvpr. XX 1–15. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.8889&rep=rep1&type=pdf%0Ahttp://dx.doi.org/10.1109/CVPR.2012.6248050
Lellmann, J and Schnörr, C (2011). Continuous Multiclass Labeling Approaches and Algorithms. CoRR. abs/1102.5448. http://arxiv.org/abs/1102.5448
Lellmann, J and Schnörr, C (2011). Continuous Multiclass Labeling Approaches and Algorithms. SIAM J.~Imag.~Sci. 4 1049-1096PDF icon Technical Report (4.31 MB)
Savarino, F and Schnörr, C (2019). Continuous-Domain Assignment Flows. preprint: arXiv. https://arxiv.org/abs/1910.07287
Yuan, J, Schnörr, C and Steidl, G (2009). Convex Hodge Decomposition and Regularization of Image Flows. J.~Math.~Imag.~Vision. 33 169-177PDF icon Technical Report (1003.75 KB)
Swoboda, P and Schnörr, C (2013). Convex Variational Image Restoration with Histogram Priors. SIAM J.~Imag.~Sci. 6 1719-1735PDF icon Technical Report (553.54 KB)
Hering, M, Körner, K and Jähne, B (2009). Correlated speckle noise in white-light interferometry: theoretical analysis of measurement uncertainty. Appl. Optics. 48 525--538
Maco, B, Holtmaat, A, Cantoni, M, Kreshuk, A, Straehle, C N, Hamprecht, F A and Knott, G W (2013). Correlative in vivo 2 photon and focused ion beam scanning electron microscopy of cortical neurons. PloS one. 8 (2)PDF icon Technical Report (2.13 MB)
Petra, S, Schnörr, C and Schröder, A (2013). Critical Parameter Values and Reconstruction Propertiesof Discrete Tomography: Application to Experimental FluidDynamics. Fundamenta Informaticae. 125 285--312PDF icon Technical Report (1.42 MB)
Lu, G -hung, Tsai, W -ting and Jähne, B (2019). Decomposing infrared images of wind waves for quantitative separation into characteristic flow processes. IEEE Transactions on Geoscience and Remote Sensing. 57 8304–8316
Dencker, T, Klinkisch, P, Maul, S M and Ommer, B (2020). Deep learning of cuneiform sign detection with weak supervision using transliteration alignment. PLoS ONE. 15. https://hci.iwr.uni-heidelberg.de/compvis/projects/cuneiform
Kleesiek, J, Urban, G, Hubert, A, Schwarz, D, Maier-Hein, K, Bendszus, M and Biller, A (2016). Deep MRI brain extraction: A 3D convolutional neural network for skull stripping.. NeuroImage. 129 460-469PDF icon Technical Report (1.14 MB)
Sanakoyeu, A, Bautista, M and Ommer, B (2018). Deep Unsupervised Learning of Visual Similarities. Pattern Recognition. 78. https://authors.elsevier.com/a/1WXUt77nKSb25 PDF icon PDF (8.35 MB)
Bollweg, S, Haußmann, M, Kasieczka, G, Luchmann, M, Plehn, T and Thompson, J (2020). Deep-Learning Jets with Uncertainties and More. SciPost Phys. 8. https://scipost.org/10.21468/SciPostPhys.8.1.006PDF icon Technical Report (1.65 MB)
Frank, M, Plaue, M and Hamprecht, F A (2009). Denoising of Continuous-Wave Time-Of-Flight Depth Images Using Confidence Measures. Optical Engineering. 48, 077003PDF icon Technical Report (2.5 MB)
Schilling, H, Diebold, M, Gutsche, M and Jähne, B (2017). On the design of a fractal calibration pattern for improved camera calibration. tm - Technisches Messen. 84 440–451
Menze, B H, Ur, J A and Sherratt, A G (2006). Detection of ancient settlement mounds - Archaeological survey based on the SRTM terrain model. Photgrammetric Engineering & Remote Sensing. 3 321-327PDF icon Technical Report (643.89 KB)
Eyjolfsdottir, E, Branson, S, Burgos-Artizzu, X P, Hoopfer, E D, Schor, J, Anderson, D J and Perona, P (2014). Detection of social actions in fruit flies. Lecture Notes in Computer Science. Springer International Publishing, Cham. 8690 772–787. http://link.springer.com/10.1007/978-3-319-10605-2 http://www.ncbi.nlm.nih.gov/pubmed/31629782
Schnörr, (1991). Determining Optical Flow for Irregular Domains by Minimizing Quadratic Functionals of a Certain Class. ijcv. 6 25–38
Lou, X, Kirchner, M, Renard, B Y, Köthe, U, Graf, C, Lee, C, Steen, J A J, Steen, H, Mayer, M P and Hamprecht, F A (2010). Deuteration Distribution Estimation with Improved Sequence Coverage for HX/MS Experiments. Bioinformatics. 26(12) 1535-1541PDF icon Technical Report (518.01 KB)
Hamprecht, F A, Cohen, A J, Tozer, D J and Handy, N C (1998). Development and assessment of new exchange-correlation functionals. Journal of Chemical Physics. 109 6264-6271
Steen, J A J, Steen, H, Georgi, A, Parker, K C, Springer, M, Kirchner, M, Hamprecht, F A and Kirschner, M W (2008). Different Phosphorylation States of the Anaphase Promoting Complex in Response to Anti-Mitotic Drugs: A Quantitative Proteomic Analysis. Proceedings of the National Academy of Sciences. 105 6069-6074PDF icon Technical Report (173.02 KB)
Cremers, D, Tischhäuser, F, Weickert, J and Schnörr, C (2002). Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford–Shah functional. Int. J. Computer Vision. 50 295–313
Vijayan, A, Tofanelli, R, Strauss, S, Cerrone, L, Wolny, A, Strohmeier, J, Kreshuk, A, Hamprecht, F A, Smith, R S and Schneitz, K (2021). A Digital 3D Reference Atlas Reveals Cellular Growth Patterns Shaping the Arabidopsis Ovule. eLife
Lellmann, J, Lellmann, B, Widmann, F and Schnörr, C (2013). Discrete and Continuous Models for Partitioning Problems. Int.~J.~Comp.~Visionz. 104 241-269PDF icon Technical Report (4.74 MB)
Savchynskyy, B (2019). Discrete Graphical Models — An Optimization Perspective. Foundations and Trends® in Computer Graphics and Vision. Now Publishers. 11 160–429
Yuan, J, Schnörr, C and Mémin, E (2007). Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation. J.~Math.~Imag.~Vision. 28 67-80PDF icon Technical Report (752.44 KB)
Schüle, T, Schnörr, C, Weber, S and Hornegger, J (2005). Discrete Tomography By Convex-Concave Regularization and D.C. Programming. Discr. Appl. Math. 151 229-243
Uhlmann, V, Haubold, C, Hamprecht, F A and Unser, M (2017). Diverse Shortest Paths for Bioimage Analysis. Bioinformatics. 1-3
Kohlberger, T, Schnörr, C, Bruhn, A and Weickert, J (2005). Domain decomposition for variational optical flow computation. IEEE Trans. Image Proc. 14 1125-1137
Scholz, J, Wiersbinski, T, Ruhnau, P, Kondermann, D, Garbe, C S, Hain, R and Beushausen, V (2008). Double-pulse planar-LIF investigations using fluorescence motion analysis for mixture formation investigation. Exp. Fluids. 45 583--593
Swoboda, P, Kuske, J and Savchynskyy, B (2016). A Dual Ascent Framework for Lagrangean Decomposition of Combinatorial Problems. arXiv, preprint. https://arxiv.org/pdf/1612.05460.pdf
Wahl, A - S, Erlebach, E, Brattoli, B, Büchler, U, Kaiser, J, Ineichen, V B, Mosberger, A C, Schneeberger, S, Imobersteg, S, Wieckhorst, M, Stirn, M, Schroeter, A, Ommer, B and Schwab, M E (2018). Early reduced behavioral activity induced by large strokes affects the efficiency of enriched environment in rats. Sage Journals. Journal of Cerebral Blood Flow & Metabolism. http://journals.sagepub.com/doi/abs/10.1177/0271678X18777661PDF icon 0271678x18777661.pdf (770.87 KB)
Storath, M, Brandt, C, Hofmann, M, Knopp, T, Salamon, J, Weber, A and Weinmann, A (2017). Edge preserving and noise reducing reconstruction for magnetic particle imaging. IEEE Transactions on Medical Imaging. 36 74 - 85PDF icon Technical Report (1.43 MB)
Kiefer, L, Storath, M and Weinmann, A (2019). An efficient algorithm for the piecewise affine-linear Mumford-Shah model based on a Taylor jet splitting. IEEE Transactions on Image Processing. 29PDF icon Technical Report (2.04 MB)

Pages