Publications

Export 1965 results:
Author Title Type [ Year(Desc)]
2019
T. J. Adler, Ayala, L., Ardizzone, L., Kenngott, H. G., Vemuri, A., Müller-Stich, B. P., Rother, C., Köthe, U., and Maier-Hein, L., Out of Distribution Detection for Intra-operative Functional Imaging, in MICCAI UNSURE Workshop 2019, 2019, vol. 11840 LNCS, pp. 75–82.PDF icon PDF (3.1 MB)
R. Snajder, Pipeline für die automatisierte Objektsegmentierung von 3D Lightshet Mikroskopiebildern, Heidelberg University, 2019.
F. E Sanmartin, Damrich, S., and Hamprecht, F. A., Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning, in Advances in Neural Information Processing Systems, 2019.
A. Bhowmik, Gumhold, S., Rother, C., and Brachmann, E., Reinforced Feature Points: Optimizing Feature Detection and Description for a High-Level Task, 2019.
J. Li, Robust Single Object Tracking via Fully Convolutional Siamese Networks, Heidelberg University, 2019.
M. Haußmann, Hamprecht, F. A., and Kandemir, M., Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation, UAI. Proceedings. pp. 563-573, 2019.PDF icon Technical Report (1.04 MB)
M. Zisler, Zern, A., Petra, S., and Schnörr, C., Self-Assignment Flows for Unsupervised Data Labeling on Graphs, preprint: arXiv, 2019.
Y. Li, Semantic Instance Segmentation with the Multiway Mutex Watershed, Heidelberg University, 2019.
E. Fita, Semi-supervised distance-based segmentation, Heidelberg University, 2019.
P. Voigt, Simulation and Measurement of the Water-sided Viscous Shear Stress without Waves, Institut für Umweltphysik, Universität Heidelberg, Germany, 2019.
M. Storath, Kiefer, L., and Weinmann, A., Smoothing for signals with discontinuities using higher order Mumford-Shah models, Numerische Mathematik, vol. 143(2), pp. 423-460, 2019.PDF icon Technical Report (1.09 MB)
M. Desana and Schnörr, C., Sum-Product Graphical Models, Machine Learning, 2019.
Y. Censor, Petra, S., and Schnörr, C., Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least Squares Case, preprint: arXiv, 2019.
M. Großkinsky, Synaptic Cleft Prediction on Electron Microsope Images, Heidelberg University, 2019.
M. Esposito, Hennersperger, C., Göbl, R., Demaret, L., Storath, M., Navab, N., Baust, M., and Weinmann, A., Total variation regularization of pose signals with an application to 3D freehand ultrasound, IEEE Transactions on Medical Imaging, vol. 38(10), pp. 2245-2258, 2019.
S. Xiao, Tracking Dividing Cells Using Spatio-Temporal Embeddings, Heidelberg University, 2019.
A. Zern, Zisler, M., Petra, S., and Schnörr, C., Unsupervised Assignment Flow: Label Learning on Feature Manifolds by Spatially Regularized Geometric Assignment, preprint: arXiv, 2019.
M. Zisler, Zern, A., Petra, S., and Schnörr, C., Unsupervised Labeling by Geometric and Spatially Regularized Self-Assignment, in Proc. SSVM, 2019.
D. Lorenz, Bereska, L., Milbich, T., and Ommer, B., Unsupervised Part-Based Disentangling of Object Shape and Appearance, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Oral + Best paper finalist: top 45 / 5160 submissions), 2019.
P. Esser, Haux, J., and Ommer, B., Unsupervised Robust Disentangling of Latent Characteristics for Image Synthesis, in Proceedings of the Intl. Conf. on Computer Vision (ICCV), 2019.
D. Kotovenko, Sanakoyeu, A., Lang, S., Ma, P., and Ommer, B., Using a Transformation Content Block For Image Style Transfer, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2019.
F. Savarino and Schnörr, C., A Variational Perspective on the Assignment Flow, in Proc. SSVM, 2019.
N. Ufer, Lui, K. To, Schwarz, K., Warkentin, P., and Ommer, B., Weakly Supervised Learning of Dense SemanticCorrespondences and Segmentation, in German Conference on Pattern Recognition (GCPR), 2019.PDF icon article (6.1 MB)
N. Pandey, Weakly Supervised Semantic Segmentation, Heidelberg University, 2019.
2020
A. Wolny, Cerrone, L., Vijayan, A., Tofanelli, R., Vilches-Barro, A., Louveaux, M., Wenzel, C., Strauss, S., Wilson-Sanchez, D., Lymbouridou, R., Steigleder, S. S., Pape, C., Bailoni, A., Duran-Nebreda, S., Bassel, G. W., Lohmann, J. U., Tsiantis, M., Hamprecht, F. A., Schneitz, K., Maizel, A., and Kreshuk, A., Accurate and Versatile 3D Segmentation of Plant Tissues at Cellular Resolution, eLife, vol. 9, 2020.
A. Krull, Hirsch, P., Rother, C., Schiffrin, A., and Krull, C., Artificial-intelligence-driven scanning probe microscopy, Communications Physics, vol. 3, 2020.
C. Schnörr, Assignment Flows, Handbook of Variational Methods for Nonlinear Geometric Data. Springer, p. 235—260, 2020.
A. Zern, Zeilmann, A., and Schnörr, C., Assignment Flows for Data Labeling on Graphs: Convergence and Stability, preprint: arXiv, 2020.
S. T. Radev, Mertens, U. K., Voss, A., Ardizzone, L., and Köthe, U., BayesFlow: Learning complex stochastic models with invertible neural networks, 2020.PDF icon PDF (5.36 MB)
M. Haußmann, Gerwinn, S., and Kandemir, M., Bayesian Evidential Deep Learning with PAC Regularization , 3rd Symposium on Advances in Approximate Bayesian Inference . 2020.
C. Kamann and Rother, C., Benchmarking the Robustness of Semantic Segmentation Models, in CVPR 2020, 2020.PDF icon PDF (3.61 MB)
F. Kluger, Brachmann, E., Ackermann, H., Rother, C., Yang, M. Ying, and Rosenhahn, B., CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus, in CVPR 2020, 2020.PDF icon PDF (9.95 MB)
S. Lang and Ommer, B., Das Objekt jenseits der Digitalisierung, Das digitale Objekt, vol. 7. 2020.PDF icon lang_ommer_digitalhumanities_2020_.pdf (599.56 KB)
T. Dencker, Klinkisch, P., Maul, S. M., and Ommer, B., Deep learning of cuneiform sign detection with weak supervision using transliteration alignment, PLoS ONE, vol. 15, no. 12, 2020.
S. Bollweg, Haußmann, M., Kasieczka, G., Luchmann, M., Plehn, T., and Thompson, J., Deep-Learning Jets with Uncertainties and More, SciPost Phys, vol. 8, no. 1, 2020.PDF icon Technical Report (1.65 MB)

Pages