Publications

Export 1965 results:
Author Title Type [ Year(Desc)]
2020
E. Kirschbaum, Bailoni, A., and Hamprecht, F. A., DISCo: Deep Learning, Instance Segmentation, and Correlations for Cell Segmentation in Calcium Imaging, MICCAI. Proceedings. pp. 151-162, 2020.
P. Sorrenson, Rother, C., and Köthe, U., Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN), in Intl. Conf. Learning Representations (ICLR), 2020.PDF icon PDF (2.43 MB)
P. Esser, Rombach, R., and Ommer, B., A Disentangling Invertible Interpretation Network for Explaining Latent Representations, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2020.PDF icon Article (13.07 MB)
T. Milbich, Roth, K., Bharadhwaj, H., Sinha, S., Bengio, Y., Ommer, B., and Cohen, J. Paul, DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning, IEEE European Conference on Computer Vision (ECCV). 2020.
T. M. Hehn, Kooij, J. F. P., and Hamprecht, F. A., End-to-End Learning of Decision Trees and Forests, International Journal of Computer Vision, vol. 128, pp. 997-1011, 2020.
L. Ardizzone, Mackowiak, R., Rother, C., and Köthe, U., Exact Information Bottleneck with Invertible Neural Networks: Getting the Best of Discriminative and Generative Modeling, 2020.PDF icon PDF (2.87 MB)
A. Zeilmann, Savarino, F., Petra, S., and Schnörr, C., Geometric Numerical Integration of the Assignment Flow, Inverse Problems, vol. 36, p. 034004 (33pp), 2020.
S. Wolf, Hamprecht, F. A., and Funke, J., Inpainting Networks Learn to Separate Cells in Microscopy Images, BMCV. 2020.PDF icon Technical Report (357.23 KB)
S. Wolf, Hamprecht, F. A., and Funke, J., Instance Separation Emerges from Inpainting, arXiv preprint arXiv:2003.00891, 2020.
S. Friman, Laboratory investigations of concentration and wind profiles close to the wind-driven wavy water surface, vol. Dissertation. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg, Heidelberg, 2020.
S. Wolf, Machine Learning for Instance Segmentation. Heidelberg University, 2020.
R. Rombach, Esser, P., and Ommer, B., Making Sense of CNNs: Interpreting Deep Representations & Their Invariances with INNs, IEEE European Conference on Computer Vision (ECCV). 2020.
H. Schilling, Gutsche, M., Brock, A., Späth, D., Rother, C., and Krispin, K., Mind the Gap – A Benchmark for Dense Depth Prediction beyond Lidar, in 2nd Workshop on Safe Artificial Intelligence for Automated Driving, in conjunction with CVPR 2020, 2020.
S. Wolf, Bailoni, A., Pape, C., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph Partitioning, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, pp. 3724-3738, 2020.PDF icon Technical Report (2.58 MB)
R. Rombach, Esser, P., and Ommer, B., Network Fusion for Content Creation with Conditional INNs, in CVPRW 2020 (AI for Content Creation), 2020.
R. Rombach, Esser, P., and Ommer, B., Network-to-Network Translation with Conditional Invertible Neural Networks, Neural Information Processing Systems (NeurIPS) (Oral). 2020.
P. Esser, Rombach, R., and Ommer, B., A Note on Data Biases in Generative Models, in NeurIPS 2020 Workshop on Machine Learning for Creativity and Design, 2020.
N. Ufer, Lang, S., and Ommer, B., Object Retrieval and Localization in Large Art Collections Using Deep Multi-style Feature Fusion and Iterative Voting, IEEE European Conference on Computer Vision (ECCV), VISART Workshop . 2020.PDF icon Paper (1.03 MB)
T. Milbich, Roth, K., and Ommer, B., PADS: Policy-Adapted Sampling for Visual Similarity Learning, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020, vol. 1, no. 1.
S. Haller, Prakash, M., Hutschenreiter, L., Pietzsch, T., Rother, C., Jug, F., Swoboda, P., and Savchynskyy, B., A Primal-Dual Solver for Large-Scale Tracking-by-Assignment, AISTATS 2020. 2020.PDF icon PDF (1.04 MB)
A. Bailoni, Pape, C., Wolf, S., Kreshuk, A., and Hamprecht, F. A., Proposal-Free Volumetric Instance Segmentation from Latent Single-Instance Masks, GCPR, vol. 12544. Springer, pp. 331-344, 2020.
A. Bhowmik, Gumhold, S., Rother, C., and Brachmann, E., Reinforced Feature Points: Optimizing Feature Detection and Description for a High-Level Task, in CVPR 2020 (oral), 2020.PDF icon PDF (2.74 MB)
K. Roth, Milbich, T., Sinha, S., Gupta, P., Ommer, B., and Cohen, J. Paul, Revisiting Training Strategies and Generalization Performance in Deep Metric Learning, International Conference on Machine Learning (ICML). 2020.
S. K. Mustikovela, Jampani, V., De Mello, S., Liu, S., Iqbal, U., Rother, C., and Kautz, J., Self-Supervised Viewpoint Learning From Image Collections, in CONSAC, 2020.PDF icon PDF (8.77 MB)
S. Wolf, Li, Y., Pape, C., Bailoni, A., Kreshuk, A., and Hamprecht, F. A., The Semantic Mutex Watershed for Efficient Bottom-Up Semantic Instance Segmentation, ECCV. Proceedings. pp. 208-224, 2020.
T. Milbich, Roth, K., Brattoli, B., and Ommer, B., Sharing Matters for Generalization in Deep Metric Learning, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020.
B. Jähne, Struktur und Chaos: Kleinskalige Austauschprozesse zwischen Atmosphäre und Meer, Heidelberger Jahrbücher Online, Entwicklung – Wie aus Prozessen Strukturen werden, vol. 5. pp. 133–150, 2020.
M. Desana and Schnörr, C., Sum-Product Graphical Models, Machine Learning, vol. 109, pp. 135–173, 2020.
Y. Censor, Petra, S., and Schnörr, C., Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least Squares Case, J. Appl. Numer. Optimization (in press; arXiv:1911.05498), vol. 2, pp. 15-62, 2020.
S. Tourani, Shekhovtsov, A., Rother, C., and Savchynskyy, B., Taxonomy of Dual Block-Coordinate Ascent Methods for Discrete Energy Minimization, in AISTATS 2020, 2020.PDF icon PDF (2.58 MB)
A. Zern, Zisler, M., Petra, S., and Schnörr, C., Unsupervised Assignment Flow: Label Learning on Feature Manifolds by Spatially Regularized Geometric Assignment, Journal of Mathematical Imaging and Vision, 2020.
M. Dorkenwald, Büchler, U., and Ommer, B., Unsupervised Magnification of Posture Deviations Across Subjects, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2020.PDF icon article.pdf (1.15 MB)
S. Braun, Esser, P., and Ommer, B., Unsupervised Part Discovery by Unsupervised Disentanglement, Proceedings of the German Conference on Pattern Recognition (GCPR) (Oral). Tübingen, 2020.
T. Milbich, Ghori, O., and Ommer, B., Unsupervised Representation Learning by Discovering Reliable Image Relations, Pattern Recognition, vol. 102, 2020.
B. Jähne, What controls air-sea gas exchange at extreme wind speeds? Evidence from laboratory experiments, Recent Advances in the Study of Oceanic Whitecaps. Springer, pp. 133–150, 2020.

Pages