Pacific Graphics 2015 DenseCut: Densely Connected CRFs for Realtime GrabCut

TitlePacific Graphics 2015 DenseCut: Densely Connected CRFs for Realtime GrabCut
Publication TypeJournal Article
Year of Publication2015
AuthorsMitra, NJ, Stam, J, Xu, K, Cheng, M-M, Prisacariu, VAdrian, Zheng, S, Torr, PHS, Rother, C
Volume34
KeywordsI46 [IMAGE PROCESSING AND COMPUTER VISION], partitioning, Segmentation—Region growing
Abstract

Figure-ground segmentation from bounding box input, provided either automatically or manually, has been ex-tremely popular in the last decade and influenced various applications. A lot of research has focused on high-quality segmentation, using complex formulations which often lead to slow techniques, and often hamper practi-cal usage. In this paper we demonstrate a very fast segmentation technique which still achieves very high quality results. We propose to replace the time consuming iterative refinement of global colour models in traditional GrabCut formulation by a densely connected CRF. To motivate this decision, we show that a dense CRF implicitly models unnormalized global colour models for foreground and background. Such relationship provides insightful analysis to bridge between dense CRF and GrabCut functional. We extensively evaluate our algorithm using two famous benchmarks. Our experimental results demonstrated that the proposed algorithm achieves an order of magnitude (10×) speed-up with respect to the closest competitor, and at the same time achieves a considerably higher accuracy.

URLhttp://mftp.mmcheng.net/Papers/DenseCut.pdf
Citation KeyMitra2015