Title | Interleaved regression tree field cascades for blind image deconvolution |
Publication Type | Conference Paper |
Year of Publication | 2015 |
Authors | Schelten, K, Nowozin, S, Jancsary, J, Rother, C, Roth, S |
Conference Name | Proceedings - 2015 IEEE Winter Conference on Applications of Computer Vision, WACV 2015 |
ISBN Number | 9781479966820 |
Abstract | Image blur from camera shake is a common cause for poor image quality in digital photography, prompting a significant recent interest in image deblurring. The vast majority of work on blind deblurring splits the problem into two subsequent steps: First, the blur process (i.e., blur kernel) is estimated, then the image is restored given the estimated kernel using a non-blind deblurring algorithm. Recent work in non-blind deblurring has shown that discriminative approaches can have clear image quality and runtime benefits over typical generative formulations. In this paper, we propose a cascade for blind deblurring that alternates between kernel estimation and discriminative deblurring using regression tree fields (RTFs). We further contribute a new dataset of realistic image blur kernels from human camera shake, which we use to train the discriminative component. Extensive qualitative and quantitative experiments show a clear gain in image quality by interleaving kernel estimation and discriminative deblurring in an iterative cascade. |
DOI | 10.1109/WACV.2015.72 |
Citation Key | Schelten2015 |