All Publications

2020

Rombach, R, Esser, P and Ommer, B (2020). Making Sense of CNNs: Interpreting Deep Representations & Their Invariances with INNs. IEEE European Conference on Computer Vision (ECCV). https://compvis.github.io/invariances/
Jähne, (2020). Struktur und Chaos: Kleinskalige Austauschprozesse zwischen Atmosphäre und Meer. Heidelberger Jahrbücher Online, Entwicklung – Wie aus Prozessen Strukturen werden. 5 133–150
Wolf, S, Li, Y, Pape, C, Bailoni, A, Kreshuk, A and Hamprecht, F A (2020). The Semantic Mutex Watershed for Efficient Bottom-Up Semantic Instance Segmentation. ECCV. Proceedings. 208-224
Bailoni, A, Pape, C, Wolf, S, Kreshuk, A and Hamprecht, F A (2020). Proposal-Free Volumetric Instance Segmentation from Latent Single-Instance Masks. GCPR. Springer. 12544 331-344
Esser, P, Rombach, R and Ommer, B (2020). A Note on Data Biases in Generative Models. NeurIPS 2020 Workshop on Machine Learning for Creativity and Design. https://arxiv.org/abs/2012.02516
Braun, S, Esser, P and Ommer, B (2020). Unsupervised Part Discovery by Unsupervised Disentanglement. Proceedings of the German Conference on Pattern Recognition (GCPR) (Oral). Tübingen. https://compvis.github.io/unsupervised-part-segmentation/

2019

Hühnerbein, R, Savarino, F, Petra, S and Schnörr, C (2019). Learning Adaptive Regularization for Image Labeling Using Geometric Assignment. preprint: arXiv. https://arxiv.org/abs/1910.09976
Berg, S, Kutra, D, Kroeger, T, Straehle, C N, Kausler, B X, Haubold, C, Schiegg, M, Ales, J, Beier, T, Rudy, M, Eren, K, Cervantes, J I, Xu, B, Beuttenmüller, F, Wolny, A, Zhang, C, Köthe, U, Hamprecht, F A and Kreshuk, A (2019). ilastik: interactive machine learning for (bio)image analysis. Nature Methods. 16 1226-1232
Ufer, N, Lui, K To, Schwarz, K, Warkentin, P and Ommer, B (2019). Weakly Supervised Learning of Dense SemanticCorrespondences and Segmentation. German Conference on Pattern Recognition (GCPR)PDF icon article (6.1 MB)
Esser, P, Haux, J and Ommer, B (2019). Unsupervised Robust Disentangling of Latent Characteristics for Image Synthesis. Proceedings of the Intl. Conf. on Computer Vision (ICCV). https://compvis.github.io/robust-disentangling/
Kotovenko, D, Sanakoyeu, A, Lang, S and Ommer, B (2019). Content and Style Disentanglement for Artistic Style Transfer. Proceedings of the Intl. Conf. on Computer Vision (ICCV)
Brattoli, B, Roth, K and Ommer, B (2019). MIC: Mining Interclass Characteristics for Improved Metric Learning. Proceedings of the Intl. Conf. on Computer Vision (ICCV)
Hosseini Jafari, O, Mustikovela, S Karthik, Pertsch, K, Brachmann, E and Rother, C (2019). iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11363 LNCS 477–492
Li, W, Hosseini Jafari, O and Rother, C (2019). Deep Object Co-segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11363 LNCS 638–653
Haußmann, M, Gerwinn, S and Kandemir, M (2019). Bayesian Prior Networks with PAC Training. arXiv preprint arXiv:1906.00816
Leistner, T, Schilling, H, Mackowiak, R, Gumhold, S and Rother, C (2019). Learning to Think Outside the Box: Wide-Baseline Light Field Depth Estimation with EPI-Shift. Proceedings - 2019 International Conference on 3D Vision, 3DV 2019. 249–257. http://arxiv.org/abs/1909.09059 http://dx.doi.org/10.1109/3DV.2019.00036PDF icon PDF (8.94 MB)
Haußmann, M, Hamprecht, F A and Kandemir, M (2019). Deep Active Learning with Adaptive Acquisition. IJCAI. Proceedings. 2470-2476PDF icon Technical Report (137.6 KB)
Haußmann, M, Hamprecht, F A and Kandemir, M (2019). Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation. UAI. Proceedings. 563-573PDF icon Technical Report (1.04 MB)
Schnörr, (2019). Assignment Flows. Variational Methods for Nonlinear Geometric Data and Applications. Springer
Zeilmann, A, Savarino, F, Petra, S and Schnörr, C (2019). Geometric Numerical Integration of the Assignment Flow. Inverse Problems. https://doi.org/10.1088/1361-6420/ab2772
Rathke, F and Schnörr, C (2019). Fast Multivariate Log-Concave Density Estimation. Comp. Statistics & Data Analysis. 140 41–58
Zern, A, Zisler, M, Petra, S and Schnörr, C (2019). Unsupervised Assignment Flow: Label Learning on Feature Manifolds by Spatially Regularized Geometric Assignment. preprint: arXiv. https://arxiv.org/abs/1904.10863
Savarino, F and Schnörr, C (2019). A Variational Perspective on the Assignment Flow. Proc. SSVM. Springer
Zisler, M, Zern, A, Petra, S and Schnörr, C (2019). Unsupervised Labeling by Geometric and Spatially Regularized Self-Assignment. Proc. SSVM. Springer
Hühnerbein, R, Savarino, F, Petra, S and Schnörr, C (2019). Learning Adaptive Regularization for Image Labeling Using Geometric Assignment. Proc. SSVM. Springer
Bendinger, A L, Debus, C, Glowa, C, Karger, C P, Peter, J and Storath, M (2019). Bolus arrival time estimation in dynamic contrast-enhanced magnetic resonance imaging of small animals based on spline models, in press. Physics in Medicine and Biology. 64
Kostrykin, L, Schnörr, C and Rohr, K (2019). Globally Optimal Segmentation of Cell Nuclei in Fluoroscence Microscopy Images using Shape and Intensity Information. Medical Image Analysis. https://doi.org/10.1016/j.media.2019.101536
Brachmann, E and Rother, C (2019). Neural-guided RANSAC: Learning where to sample model hypotheses. Proceedings of the IEEE International Conference on Computer Vision. 2019-Octob 4321–4330. http://arxiv.org/abs/1905.04132PDF icon PDF (8.02 MB)
Brachmann, E and Rother, C (2019). Expert sample consensus applied to camera re-localization. Proceedings of the IEEE International Conference on Computer Vision. 2019-Octob 7524–7533. http://arxiv.org/abs/1908.02484
Cerrone, L, Zeilmann, A and Hamprecht, F A (2019). End-to-End Learned Random Walker for Seeded Image Segmentation. CVPR. Proceedings. 12559-12568
Censor, Y, Petra, S and Schnörr, C (2019). Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least Squares Case. preprint: arXiv. https://arxiv.org/abs/1911.05498
Zisler, M, Zern, A, Petra, S and Schnörr, C (2019). Self-Assignment Flows for Unsupervised Data Labeling on Graphs. preprint: arXiv. https://arxiv.org/abs/1911.03472
Desana, M and Schnörr, C (2019). Sum-Product Graphical Models. Machine Learning. https://doi.org/10.1007/s10994-019-05813-2
Li, Y (2019). Semantic Instance Segmentation With The Multiway Mutex Watershed. Heidelberg University
Li, J (2019). Robust Single Object Tracking Via Fully Convolutional Siamese Networks. Heidelberg University
Kotovenko, D, Sanakoyeu, A, Lang, S, Ma, P and Ommer, B (2019). Using a Transformation Content Block For Image Style Transfer. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Sanakoyeu, A, Tschernezki, V, Büchler, U and Ommer, B (2019). Divide and Conquer the Embedding Space for Metric Learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://github.com/CompVis/metric-learning-divide-and-conquer
Savarino, F and Schnörr, C (2019). Continuous-Domain Assignment Flows. preprint: arXiv. https://arxiv.org/abs/1910.07287
Bengio, Y, Deleu, T, Rahaman, N, Ke, R, Lachapelle, S, Bilaniuk, O, Goyal, A and Pal, C (2019). A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms. arXiv preprint arXiv:1901.10912PDF icon Technical Report (871.59 KB)
Lorenz, D, Bereska, L, Milbich, T and Ommer, B (2019). Unsupervised Part-Based Disentangling of Object Shape and Appearance. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Oral + Best paper finalist: top 45 / 5160 submissions)

Pages