All Publications

2018

Esser, P, Sutter, E and Ommer, B (2018). A Variational U-Net for Conditional Appearance and Shape Generation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (short Oral). https://compvis.github.io/vunet/
Bredies, K, Holler, M, Storath, M and Weinmann, A (2018). Total Generalized Variation for Manifold-valued Data. SIAM Journal on Imaging Sciences. 11 1785 - 1848
Lang, S and Ommer, B (2018). Attesting Similarity: Supporting the Organization and Study of Art Image Collections with Computer Vision. Digital Scholarship in the Humanities, Oxford University Press. 33 845-856
Kawetzki, D (2018). Semantic Segmentation Of Urban Scenes Using Deep Learning. Heidelberg University
Schimmel, F (2018). Learnability Of Approximated Graph Cut Segmentation. Heidelberg University
Erb, W, Weinmann, A, Ahlborg, M, Brandt, C, Bringout, G, Buzug, T M, Frikel, J, Kaethner, C, Knopp, T, März, T, Möddel, M, Storath, M and Weber, A (2018). Mathematical Analysis of the 1D Model and Reconstruction Schemes for Magnetic Particle Imaging. Inverse Problems. 34
Weiler, M, Hamprecht, F A and Storath, M (2018). Learning Steerable Filters for Rotation Equivariant CNNs. CVPR. Proceedings. 849-858PDF icon Technical Report (1.35 MB)
Sanakoyeu, A, Bautista, M and Ommer, B (2018). Deep Unsupervised Learning of Visual Similarities. Pattern Recognition. 78. https://authors.elsevier.com/a/1WXUt77nKSb25 PDF icon PDF (8.35 MB)
Esser, P, Haux, J, Milbich, T and Ommer, B (2018). Towards Learning a Realistic Rendering of Human Behavior. European Conference on Computer Vision (ECCV - HBUGEN)
Kiechle, M, Storath, M, Weinmann, A and Kleinsteuber, M (2018). Model-based learning of local image features for unsupervised texture segmentation. IEEE Transactions on Image Processing. 27 1994-2007
Vianello, A, Ackermann, J, Diebold, M and Jähne, B (2018). Robust Hough transform based 3D reconstruction from circular light fields. Conference on Computer Vision and Pattern Recognition (CVPR)
Roth, N (2018). Visualization Of Near-Surface Flow Patterns For Air-Water Gas Transfer. Institut für Umweltphysik, Universität Heidelberg, Germany
Bopp, M (2018). Air-Flow and Stress Partitioning over Wind Waves in a Linear Wind-Wave Facility. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg, Heidelberg. Dissertation
Kunz, J and Jähne, B (2018). Investigating small scale air-sea exchange processes via thermography. Front. Mech. Eng. 26

2017

Kirillov, A, Schlesinger, D, Zheng, S, Savchynskyy, B, Torr, P H S and Rother, C (2017). Joint training of generic CNN-CRF models with stochastic optimization. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 10112 LNCS 221–236. http://host.robots.ox.ac.uk:8080/leaderboard
Haußmann, M, Hamprecht, F A and Kandemir, M (2017). Variational Bayesian Multiple Instance Learning with Gaussian Processes. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 6570-6579PDF icon Technical Report (1.29 MB)
Haller, A (2017). Interactive Watershed Based Segmentation For Biological Images. University of Heidelberg
Vianello, A, Manfredi, G, Diebold, M and Jähne, B (2017). 3D reconstruction by a combined structure tensor and Hough transform light field approach. tm - Technisches Messen
Storath, M, Rickert, D, Unser, M and Weinmann, A (2017). Fast segmentation from blurred data in 3D fluorescence microscopy. IEEE Transactions on Image Processing. 26
Brosowsky, M (2017). Cluster Resolving For Animal Tracking: Multi Hypotheses Tracking With Part Based Model For Object Hypotheses Generation And Pose Estimation. University of Heidelberg
Krasowki, N, Beier, T, Knott, G W, Köthe, U, Hamprecht, F A and Kreshuk, A (2017). Neuron Segmentation with High-Level Biological Priors. IEEE Transactions on Medical Imaging. 37
Kandemir, M, Hamprecht, F A, Wojek, C and Schmidt, U (2017). Active machine learning for training an event classification. Patent, Patent Number WO2017032775 A1
Kandemir, M, Hamprecht, F A, Wojek, C and Schmidt, U (2017). Maschinelles Lernen. Patent, Patent Number WO2017032775A1PDF icon Technical Report (317.04 KB)
Haubold, C, Uhlmann, V, Unser, M and Hamprecht, F A (2017). Diverse M-best Solutions by Dynamic Programming. GCPR. Proceedings. Springer. LNCS 10496 255-267
Bautista, M, Fuchs, P and Ommer, B (2017). Learning Where to Drive by Watching Others. Proceedings of the German Conference Pattern Recognition. Springer-Verlag, Basel. 1
Hennies, J (2017). Improvement And Validation Of Neural Em Volume Image Segmentation By High-Level Information. University of Heidelberg
Haubold, C (2017). Scalable Inference for Multi-Target Tracking on Proliferating Cells. University of Heidelberg
Milbich, T, Bautista, M, Sutter, E and Ommer, B (2017). Unsupervised Video Understanding by Reconciliation of Posture Similarities. Proceedings of the IEEE International Conference on Computer Vision (ICCV). https://hciweb.iwr.uni-heidelberg.de/compvis/research/tmilbich_iccv17
Wahl, A - S, Büchler, U, Brändli, A, Brattoli, B, Musall, S, Kasper, H, Ineichen, B V, Helmchen, F, Ommer, B and Schwab, M E (2017). Optogenetically stimulating the intact corticospinal tract post-stroke restores motor control through regionalized functional circuit formation. Nature Communications. (ASW & UB contributed equally; BO and MES contributed equally). https://www.nature.com/articles/s41467-017-01090-6
Sümer, Ö, Dencker, T and Ommer, B (2017). Self-supervised Learning of Pose Embeddings from Spatiotemporal Relations in Videos. Proceedings of the IEEE International Conference on Computer Vision (ICCV)PDF icon Paper (3.98 MB)PDF icon Supplementary Material (3.36 MB)
Wolf, S, Schott, L, Köthe, U and Hamprecht, F A (2017). Learned Watershed: End-to-End Learning of Seeded Segmentation. ICCV. 2030-2038PDF icon Technical Report (3.76 MB)
Peter, S, Diego, F, Hamprecht, F A and Nadler, B (2017). Cost-efficient Gradient Boosting. NIPS, poster
Peter, S, Kirschbaum, E, Both, M, Campbell, L A, Harvey, B K, Heins, C, Durstewitz, D, Diego, F and Hamprecht, F A (2017). Sparse convolutional coding for neuronal assembly detection. NIPS, poster
Uhlmann, V, Haubold, C, Hamprecht, F A and Unser, M (2017). Diverse Shortest Paths for Bioimage Analysis. Bioinformatics. 1-3
Ulman, V, Maška, M, Magnusson, K E G, Ronneberger, O, Haubold, C, Harder, N, Matula, P, Matula, P, Svoboda, D, Radojevic, M, Smal, I, Rohr, K, Jaldén, J, Blau, H M, Dzyubachyk, O, Lelieveldt, B, Xiao, P, Li, Y, Cho, S - Y, Dufour, A, Olivo-Marin, J C, Reyes-Aldasoro, C C, Solis-Lemus, J A, Bensch, R, Brox, T, Stegmaier, J, Mikut, R, Wolf, S, Hamprecht, F A, Esteves, T, Quelhas, P, Demirel, Ö, Malström, L, Jug, F, Tomančák, P, Meijering, E, Muñoz-Barrutia, A, Kozubek, M and Ortiz-de-Solorzano, C (2017). An Objective Comparison of Cell Tracking Algorithms. Nature Methods. 14 1141-1152PDF icon Technical Report (4.24 MB)
Neigel, P (2017). Self-Similarity Based Detection Of Temporal Motifs In Multivariate Signals. Heidelberg University
Krause, G (2017). Correlation Of Performance And Entropy In Active Learning With Convolutional Neural Networks. Heidelberg University
Weiler, M (2017). Learning Steerable Filters For Rotation Equivariant Convolutional Neural Networks. Heidelberg University
Schott, L (2017). Learned Watershed Algorithm: End-To-End Learning Of Seeded Segmentation. Heidelberg University
Pape, C, Beier, T, Li, P, Jain, V, Brock, D D and Kreshuk, A (2017). Solving Large Multicut Problems for Connectomics via Domain Decomposition. Bioimage Computing Workshop. ICCV. 1-10

Pages