Publications

Export 114 results:
Author Title Type [ Year(Desc)]
Filters: Author is Björn Ommer  [Clear All Filters]
2018
S. Lang and Ommer, B., Reflecting on How Artworks Are Processed and Analyzed by Computer Vision, European Conference on Computer Vision (ECCV - VISART). Springer, 2018.
A. Sanakoyeu, Kotovenko, D., Lang, S., and Ommer, B., A Style-Aware Content Loss for Real-time HD Style Transfer, in Proceedings of the European Conference on Computer Vision (ECCV) (Oral), 2018.
P. Esser, Haux, J., Milbich, T., and Ommer, B., Towards Learning a Realistic Rendering of Human Behavior, in European Conference on Computer Vision (ECCV - HBUGEN), 2018.
P. Esser, Sutter, E., and Ommer, B., A Variational U-Net for Conditional Appearance and Shape Generation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (short Oral), 2018.
O. Blum, Brattoli, B., and Ommer, B., X-GAN: Improving Generative Adversarial Networks with ConveX Combinations, in German Conference on Pattern Recognition (GCPR) (Oral), Stuttgart, Germany, 2018.PDF icon Article (6.65 MB)PDF icon Supplementary material (7.96 MB)PDF icon Oral slides (14.96 MB)
2019
D. Kotovenko, Sanakoyeu, A., Lang, S., and Ommer, B., Content and Style Disentanglement for Artistic Style Transfer, in Proceedings of the Intl. Conf. on Computer Vision (ICCV), 2019.
A. Sanakoyeu, Tschernezki, V., Büchler, U., and Ommer, B., Divide and Conquer the Embedding Space for Metric Learning, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2019.
B. Brattoli, Roth, K., and Ommer, B., MIC: Mining Interclass Characteristics for Improved Metric Learning, in Proceedings of the Intl. Conf. on Computer Vision (ICCV), 2019.
D. Lorenz, Bereska, L., Milbich, T., and Ommer, B., Unsupervised Part-Based Disentangling of Object Shape and Appearance, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Oral + Best paper finalist: top 45 / 5160 submissions), 2019.
P. Esser, Haux, J., and Ommer, B., Unsupervised Robust Disentangling of Latent Characteristics for Image Synthesis, in Proceedings of the Intl. Conf. on Computer Vision (ICCV), 2019.
D. Kotovenko, Sanakoyeu, A., Lang, S., Ma, P., and Ommer, B., Using a Transformation Content Block For Image Style Transfer, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2019.
N. Ufer, Lui, K. To, Schwarz, K., Warkentin, P., and Ommer, B., Weakly Supervised Learning of Dense SemanticCorrespondences and Segmentation, in German Conference on Pattern Recognition (GCPR), 2019.PDF icon article (6.1 MB)
2020
S. Lang and Ommer, B., Das Objekt jenseits der Digitalisierung, Das digitale Objekt, vol. 7. 2020.PDF icon lang_ommer_digitalhumanities_2020_.pdf (599.56 KB)
T. Dencker, Klinkisch, P., Maul, S. M., and Ommer, B., Deep learning of cuneiform sign detection with weak supervision using transliteration alignment, PLoS ONE, vol. 15, no. 12, 2020.
P. Esser, Rombach, R., and Ommer, B., A Disentangling Invertible Interpretation Network for Explaining Latent Representations, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2020.PDF icon Article (13.07 MB)
T. Milbich, Roth, K., Bharadhwaj, H., Sinha, S., Bengio, Y., Ommer, B., and Cohen, J. Paul, DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning, IEEE European Conference on Computer Vision (ECCV). 2020.
R. Rombach, Esser, P., and Ommer, B., Making Sense of CNNs: Interpreting Deep Representations & Their Invariances with INNs, IEEE European Conference on Computer Vision (ECCV). 2020.
R. Rombach, Esser, P., and Ommer, B., Network Fusion for Content Creation with Conditional INNs, in CVPRW 2020 (AI for Content Creation), 2020.
R. Rombach, Esser, P., and Ommer, B., Network-to-Network Translation with Conditional Invertible Neural Networks, Neural Information Processing Systems (NeurIPS) (Oral). 2020.
P. Esser, Rombach, R., and Ommer, B., A Note on Data Biases in Generative Models, in NeurIPS 2020 Workshop on Machine Learning for Creativity and Design, 2020.
N. Ufer, Lang, S., and Ommer, B., Object Retrieval and Localization in Large Art Collections Using Deep Multi-style Feature Fusion and Iterative Voting, IEEE European Conference on Computer Vision (ECCV), VISART Workshop . 2020.PDF icon Paper (1.03 MB)
T. Milbich, Roth, K., and Ommer, B., PADS: Policy-Adapted Sampling for Visual Similarity Learning, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020, vol. 1, no. 1.
K. Roth, Milbich, T., Sinha, S., Gupta, P., Ommer, B., and Cohen, J. Paul, Revisiting Training Strategies and Generalization Performance in Deep Metric Learning, International Conference on Machine Learning (ICML). 2020.
T. Milbich, Roth, K., Brattoli, B., and Ommer, B., Sharing Matters for Generalization in Deep Metric Learning, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020.
M. Dorkenwald, Büchler, U., and Ommer, B., Unsupervised Magnification of Posture Deviations Across Subjects, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2020.PDF icon article.pdf (1.15 MB)
S. Braun, Esser, P., and Ommer, B., Unsupervised Part Discovery by Unsupervised Disentanglement, Proceedings of the German Conference on Pattern Recognition (GCPR) (Oral). Tübingen, 2020.
T. Milbich, Ghori, O., and Ommer, B., Unsupervised Representation Learning by Discovering Reliable Image Relations, Pattern Recognition, vol. 102, 2020.
2021
A. Blattmann, Milbich, T., Dorkenwald, M., and Ommer, B., Behavior-Driven Synthesis of Human Dynamics, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2021.
T. Milbich, Roth, K., Sinha, S., Schmidt, L., Ghassemi, M., and Ommer, B., Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning. 2021.
R. Rombach, Esser, P., and Ommer, B., Geometry-Free View Synthesis: Transformers and no 3D Priors, in Proceedings of the Intl. Conf. on Computer Vision (ICCV), 2021.
M. Jahn, Rombach, R., and Ommer, B., High-Resolution Complex Scene Synthesis with Transformers, in CVPR 2021, AI for Content Creation Workshop, 2021.
P. Esser, Rombach, R., Blattmann, A., and Ommer, B., ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis. 2021.
A. Sanakoyeu, Ma, P., Tschernezki, V., and Ommer, B., Improving Deep Metric Learning by Divide and Conquer, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021.
A. Blattmann, Milbich, T., Dorkenwald, M., and Ommer, B., iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis, in Proceedings of the International Conference on Computer Vision (ICCV), 2021.
M. Afifi, Derpanis, K. G., Ommer, B., and Brown, M. S., Learning Multi-Scale Photo Exposure Correction, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Pages