Publications
2021
A. Blattmann, Milbich, T., Dorkenwald, M., and Ommer, B.,
“Behavior-Driven Synthesis of Human Dynamics”,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2021.
T. Milbich, Roth, K., Sinha, S., Schmidt, L., Ghassemi, M., and Ommer, B.,
“Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning”. 2021.
M. Afifi, Derpanis, K. G., Ommer, B., and Brown, M. S.,
“Learning Multi-Scale Photo Exposure Correction”, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
K. Roth, Milbich, T., Ommer, B., Cohen, J. Paul, and Ghassemi, M.,
“S2SD: Simultaneous Similarity-based Self-Distillation for Deep Metric Learning”,
Proceedings of International Conference on Machine Learning (ICML). 2021.
M. Amirul Islam, Kowal, M., Esser, P., Jia, S., Ommer, B., Derpanis, K. G., and Bruce, N.,
“Shape or Texture: Understanding Discriminative Features in CNNs”,
International Conference on Learning Representations (ICLR). 2021.
M. Dorkenwald, Milbich, T., Blattmann, A., Rombach, R., Derpanis, K. G., and Ommer, B.,
“Stochastic Image-to-Video Synthesis usin cINNs”,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2021.
P. Esser, Rombach, R., and Ommer, B.,
“Taming Transformers for High-Resolution Image Synthesis”,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2021.
B. Brattoli, Büchler, U., Dorkenwald, M., Reiser, P., Filli, L., Helmchen, F., Wahl, A. - S., and Ommer, B.,
“Unsupervised behaviour analysis and magnification (uBAM) using deep learning”,
Nature Machine Intelligence, 2021.
2020
T. Dencker, Klinkisch, P., Maul, S. M., and Ommer, B.,
“Deep learning of cuneiform sign detection with weak supervision using transliteration alignment”,
PLoS ONE, vol. 15, no. 12, 2020.
T. Milbich, Roth, K., Bharadhwaj, H., Sinha, S., Bengio, Y., Ommer, B., and Cohen, J. Paul,
“DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning”,
IEEE European Conference on Computer Vision (ECCV). 2020.
P. Esser, Rombach, R., and Ommer, B.,
“A Note on Data Biases in Generative Models”, in
NeurIPS 2020 Workshop on Machine Learning for Creativity and Design, 2020.
T. Milbich, Roth, K., and Ommer, B.,
“PADS: Policy-Adapted Sampling for Visual Similarity Learning”, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020, vol. 1, no. 1.
K. Roth, Milbich, T., Sinha, S., Gupta, P., Ommer, B., and Cohen, J. Paul,
“Revisiting Training Strategies and Generalization Performance in Deep Metric Learning”,
International Conference on Machine Learning (ICML). 2020.
M. Dorkenwald, Büchler, U., and Ommer, B.,
“Unsupervised Magnification of Posture Deviations Across Subjects”,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2020.
article.pdf (1.15 MB) S. Braun, Esser, P., and Ommer, B.,
“Unsupervised Part Discovery by Unsupervised Disentanglement”,
Proceedings of the German Conference on Pattern Recognition (GCPR) (Oral). Tübingen, 2020.
Pages