Publications

Export 224 results:
Author Title Type [ Year(Desc)]
Filters: Author is Fred A. Hamprecht  [Clear All Filters]
2017
M. Haußmann, Hamprecht, F. A., and Kandemir, M., Variational Bayesian Multiple Instance Learning with Gaussian Processes, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 6570-6579, 2017.PDF icon Technical Report (1.29 MB)
2018
T. Hehn and Hamprecht, F. A., End-to-end Learning of Deterministic Decision Trees, German Conference on Pattern Recognition. Proceedings, vol. LNCS 11269. Springer, pp. 612-627, 2018.PDF icon Technical Report (1.4 MB)
F. Draxler, Veschgini, K., Salmhofer, M., and Hamprecht, F. A., Essentially No Barriers in Neural Network Energy Landscape, ICML. Proceedings, vol. 80. p. 1308--1317, 2018.PDF icon Technical Report (685.93 KB)
M. Weiler, Hamprecht, F. A., and Storath, M., Learning Steerable Filters for Rotation Equivariant CNNs, CVPR. Proceedings. pp. 849-858, 2018.PDF icon Technical Report (1.35 MB)
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, ECCV. Proceedings. Springer, pp. 571-587, 2018.
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A., The Mutex Watershed: Efficient, Parameter-Free Image Partitioning, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11208 LNCS, pp. 571–587.
N. Rahaman, Arpit, D., Baratin, A., Draxler, F., Lin, M., Hamprecht, F. A., Bengio, Y., and Courville, A., On the spectral bias of deep neural networks, arXiv preprint arXiv:1806.08734, 2018.
2020
T. M. Hehn, Kooij, J. F. P., and Hamprecht, F. A., End-to-End Learning of Decision Trees and Forests, International Journal of Computer Vision, vol. 128, pp. 997-1011, 2020.

Pages