M. Bopp,
“Air-Flow and Stress Partitioning over Wind Waves in a Linear Wind-Wave Facility”, vol. Dissertation. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg, Heidelberg, 2018.
H. Abu Alhaija, Mustikovela, S. Karthik, Mescheder, L., Geiger, A., and Rother, C.,
“Augmented Reality Meets Computer Vision”,
International Journal of Computer Vision, vol. In press, pp. 1–13, 2018.
H. Abu Alhaija, Mustikovela, S. Karthik, Mescheder, L., Geiger, A., and Rother, C.,
“Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes”,
International Journal of Computer Vision, vol. 126, pp. 961–972, 2018.
T. Hodaň, Michel, F., Brachmann, E., Kehl, W., Buch, A. Glent, Kraft, D., Drost, B., Vidal, J., Ihrke, S., Zabulis, X., Sahin, C., Manhardt, F., Tombari, F., Kim, T. Kyun, Matas, J., and Rother, C.,
“BOP: Benchmark for 6D object pose estimation”, in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11214 LNCS, pp. 19–35.
N. Sayed, Brattoli, B., and Ommer, B.,
“Cross and Learn: Cross-Modal Self-Supervision”, in
German Conference on Pattern Recognition (GCPR) (Oral), Stuttgart, Germany, 2018.
Article (891.47 KB)
Oral slides (9.17 MB) T. Hehn and Hamprecht, F. A.,
“End-to-end Learning of Deterministic Decision Trees”,
German Conference on Pattern Recognition. Proceedings, vol. LNCS 11269. Springer, pp. 612-627, 2018.
Technical Report (1.4 MB) F. Draxler, Veschgini, K., Salmhofer, M., and Hamprecht, F. A.,
“Essentially No Barriers in Neural Network Energy Landscape”,
ICML. Proceedings, vol. 80. p. 1308--1317, 2018.
Technical Report (685.93 KB) M. Storath and Weinmann, A.,
“Fast median filtering for phase or orientation data”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 3, pp. 639–652, 2018.
Technical Report (7.32 MB)