bommer
M
Milbich, T, Roth, K, Sinha, S, Schmidt, L, Ghassemi, M and Ommer, B (2021).
Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning.
https://arxiv.org/abs/2107.09562 I
Islam, M Amirul, Kowal, M, Esser, P, Jia, S, Ommer, B, Derpanis, K G and Bruce, N (2021).
Shape or Texture: Understanding Discriminative Features in CNNs.
International Conference on Learning Representations (ICLR) D
Dorkenwald, M, Milbich, T, Blattmann, A, Rombach, R, Derpanis, K G and Ommer, B (2021).
Stochastic Image-to-Video Synthesis usin cINNs.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) B
Brattoli, B, Büchler, U, Dorkenwald, M, Reiser, P, Filli, L, Helmchen, F, Wahl, A - S and Ommer, B (2021).
Unsupervised behaviour analysis and magnification (uBAM) using deep learning.
Nature Machine Intelligence.
https://rdcu.be/ch6pL M
Milbich, T, Roth, K, Bharadhwaj, H, Sinha, S, Bengio, Y, Ommer, B and Cohen, J Paul (2020).
DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning.
IEEE European Conference on Computer Vision (ECCV).
https://arxiv.org/abs/2004.13458 R
Roth, K, Milbich, T, Sinha, S, Gupta, P, Ommer, B and Cohen, J Paul (2020).
Revisiting Training Strategies and Generalization Performance in Deep Metric Learning.
International Conference on Machine Learning (ICML).
https://arxiv.org/pdf/2002.08473.pdf Pages