bommer
inproceedings
Milbich, T, Roth, K, Sinha, S, Schmidt, L, Ghassemi, M and Ommer, B (2021).
Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning.
https://arxiv.org/abs/2107.09562 Conference Proceedings
Islam, M Amirul, Kowal, M, Esser, P, Jia, S, Ommer, B, Derpanis, K G and Bruce, N (2021).
Shape or Texture: Understanding Discriminative Features in CNNs.
International Conference on Learning Representations (ICLR) Dorkenwald, M, Milbich, T, Blattmann, A, Rombach, R, Derpanis, K G and Ommer, B (2021).
Stochastic Image-to-Video Synthesis usin cINNs.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Journal Article
Brattoli, B, Büchler, U, Dorkenwald, M, Reiser, P, Filli, L, Helmchen, F, Wahl, A - S and Ommer, B (2021).
Unsupervised behaviour analysis and magnification (uBAM) using deep learning.
Nature Machine Intelligence.
https://rdcu.be/ch6pL Conference Proceedings
Milbich, T, Roth, K, Bharadhwaj, H, Sinha, S, Bengio, Y, Ommer, B and Cohen, J Paul (2020).
DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning.
IEEE European Conference on Computer Vision (ECCV).
https://arxiv.org/abs/2004.13458 Conference Proceedings
Roth, K, Milbich, T, Sinha, S, Gupta, P, Ommer, B and Cohen, J Paul (2020).
Revisiting Training Strategies and Generalization Performance in Deep Metric Learning.
International Conference on Machine Learning (ICML).
https://arxiv.org/pdf/2002.08473.pdf Pages