Publications

Export 1965 results:
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
O
Jähne, (2015). The ocean in the lab: measurements with light and shadow. Ruperto Carola Forschungsmagazin Heidelberg University. 7 52–59
Klinke, J, Jähne, B and Long, S R (1999). Observations of free and bound gravity-capillary Waves. The Wind-Driven Air-Sea Interface, Electromagnetic and Acoustic Sensing, Wave Dynamics and Turbulent Fluxes. 87--88
Schimpf, U, Frew, N M, Kalkenings, R, Garbe, C S and Jähne, B (2003). Observational studies of parameters influencing air--sea gas exchange. Geophysical Research Abstracts. 5 09328
Menze, B H, Kelm, B Michael, Splitthoff, N, Köthe, U and Hamprecht, F A (2011). On oblique random forests. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2011. Proceedings. Springer. 453-469PDF icon Technical Report (665.33 KB)
Küsters, (2001). Objektverfolgung Und Bildfusion Zur Untersuchung Wachsender Pflanzenwurzeln. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg
Jähne, (2009). Objektive Kriterien unterstützen die anwendungsorientierte Auswahl einer Kamera. http://www.vdma-verlag.com/home/p464.html
Mann, S (1998). Objektbasierte Bildfolgenanalyse Zur Bewegungsbestimmung Im In Vitro Motility Assay Unter Verwendung Eines Strukturtensorverfahrens. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg
Kaster, F O, Kassemeyer, S, Merkel, B, Nix, O and Hamprecht, F A (2010). An object-oriented library for systematic training and comparison of classifiers for computer-assisted tumor diagnosis from MRSI measurements. Bildverarbeitung für die Medizin 2010 -- Algorithmen, Systeme, Anwendungen. Springer. 97-101PDF icon Technical Report (1.12 MB)
Kaster, F O, Merkel, B, Nix, O and Hamprecht, F A (2011). An object-oriented library for systematic training and comparison of classifiers for computer-assisted tumor diagnosis from MRSI measurements. Computer Science - Research and Development. 26 65-85PDF icon Technical Report (808.16 KB)
Ulman, V, Maška, M, Magnusson, K E G, Ronneberger, O, Haubold, C, Harder, N, Matula, P, Matula, P, Svoboda, D, Radojevic, M, Smal, I, Rohr, K, Jaldén, J, Blau, H M, Dzyubachyk, O, Lelieveldt, B, Xiao, P, Li, Y, Cho, S - Y, Dufour, A, Olivo-Marin, J C, Reyes-Aldasoro, C C, Solis-Lemus, J A, Bensch, R, Brox, T, Stegmaier, J, Mikut, R, Wolf, S, Hamprecht, F A, Esteves, T, Quelhas, P, Demirel, Ö, Malström, L, Jug, F, Tomančák, P, Meijering, E, Muñoz-Barrutia, A, Kozubek, M and Ortiz-de-Solorzano, C (2017). An Objective Comparison of Cell Tracking Algorithms. Nature Methods. 14 1141-1152PDF icon Technical Report (4.24 MB)
Bleyer, M, Rother, C, Kohli, P, Scharstein, D and Sinha, S (2011). Object stereo Joint stereo matching and object segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 3081–3088
Schmitzer, B and Schnörr, C (2013). Object Segmentation by Shape Matching with Wasserstein Modes. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2013). 123-136
Ufer, N, Lang, S and Ommer, B (2020). Object Retrieval and Localization in Large Art Collections Using Deep Multi-style Feature Fusion and Iterative Voting. IEEE European Conference on Computer Vision (ECCV), VISART Workshop PDF icon Paper (1.03 MB)
Zheng, S, Prisacariu, V Adrian, Averkiou, M, Cheng, M Ming, Mitra, N J, Shotton, J, Torr, P H S and Rother, C (2015). Object proposals estimation in depth image using compact 3D shape manifolds. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 9358 196–208
Vicente, S, Rother, C and Kolmogorov, V (2011). Object cosegmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2217–2224
Ommer, B and Buhmann, J M (2005). Object Categorization by Compositional Graphical Models. Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer. 3757 235--250PDF icon Technical Report (2.07 MB)
Scheuermann, T, Pfundt, G, Eyerer, P and Jähne, B (1995). Oberflächenkonturvermessung mikroskopischer Objekte durch Projektion statistischer Rauschmuster. Proc. 17. DAGM-Symposium Mustererkennung, Bielefeld, 13.-15. September 1995. 319--326
N
Schulzke, E (2001). Numerische Simulation Von Elementaren Kalziumfreisetzungsereignissen Und Photolytische Ca^2+-Freisetzung Aus Käfigmolekülen Mittels Picosekundenlaser. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg
Scharr, H, Körkel, S and Jähne, B (1997). Numerische Isotropieoptimierung von FIR-Filtern mittels Querglättung. Proceedings of the 19th DAGM Symposium on Pattern Recognition, Braunschweig. 199--208
Savarino, F, Hühnerbein, R, Aström, F, Recknagel, J and Schnörr, C (2017). Numerical Integration of Riemannian Gradient Flows for Image Labeling. Proc. SSVM. Springer. 10302
Leue, C, Wenig, M, Platt, U, Jähne, B and Haußecker, H (2000). NOX Emissions Retrieved from Satellite Images. Computer Vision and Applications. A Guide for Students and Practitioners. Academic Press. 654--655
Hering, F, Balschbach, G, Jähne, B and Waldhäusl, P (1996). A novel system for the combined measurement of wave- and flow-fields beneath wind induced water waves. Proc. 18th Int. Congr. for Photogrammetry and Remote Sensing. 31 231--236. http://www.isprs.org/proceedings/XXXI/congress/part5/
Voss, B and Garbe, C S (2010). Novel strategy for water sided interfacial 3D3Cflow-visualization using a single camera. 14th International Symposium on Flow Visualization. D1-018
Voss, B (2012). Novel Single Camera Techniques for 3D3C Lagrangian Trajectory Measurements in Interfacial Flows. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg. http://www.ub.uni-heidelberg.de/archiv/13362
Jehle, M and Jähne, B (2008). A novel method for three-dimensional three-component analysis of flow close to free water surfaces. Exp. Fluids. 44 469--480
Jehle, M and Jähne, B (2006). A novel method for spatio-temporal analysis of flows within the water-side viscous boundary layer. 12th Intern. Symp. on Flow Visualization, Göttingen, 10--14. September 2006
Kirschbaum, E (2019). Novel Machine Learning Approaches for Neurophysiological Data Analysis. Heidelberg University
Stapf, J (2015). Novel learning-based techniques for dense fluid motion measurements. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg. http://www.ub.uni-heidelberg.de/archiv/18116
Schimpf, U, Garbe, C S and Jähne, B (2002). Novel insights into heat transfer across the aqueous boundary layer by infrared imagery and its application to air-sea exchange processes. Proceedings of Eurotherm 71 on Visualization, Imaging and Data Analysis In Convective Heat and Mass Transfer
Ravindran, A (2019). Novel Deep Learning-Based Instance Segmentation Using Mutex Watershed For Microscopy Cell Images. Heidelberg University
Mbock, K (2009). A Novel Algorithm For Motion Estimation With Explicit Consideration Of Perturbations. University of Heidelberg
Esser, P, Rombach, R and Ommer, B (2020). A Note on Data Biases in Generative Models. NeurIPS 2020 Workshop on Machine Learning for Creativity and Design. https://arxiv.org/abs/2012.02516
Bell, P, Schlecht, J and Ommer, B (2013). Nonverbal Communication in Medieval Illustrations Revisited by Computer Vision and Art History. Visual Resources Journal, Special Issue on Digital Art History. Taylor & Francis. 29 26--37. http://www.tandfonline.com/doi/abs/10.1080/01973762.2013.761111
Peckar, W, Schnörr, C, Rohr, K and Stiehl, H S (1998). Non-Rigid Image Registration Using a Parameter-Free Elastic Model. 9th British Machine Vision Conference (BMVC`98). Southampton/UK. 134–143
Restle, J, Hissmann, M and Hamprecht, F A (2004). Nonparametric Smoothing of Height maps using ``Confidence'' values. Optical Engineering. 43 866-871PDF icon Technical Report (1.07 MB)

Pages